Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Analyst ; 147(7): 1425-1439, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35253812

ABSTRACT

Raman spectroscopy is a non-destructive analysis technique that provides detailed information about the chemical structure of tumors. Raman spectra of 52 giant cell tumors of bone (GCTB) and 21 adjacent normal tissues of formalin-fixed paraffin embedded (FFPE) and frozen specimens were obtained using a confocal Raman spectrometer and analyzed with machine learning and deep learning algorithms. We discovered characteristic Raman shifts in the GCTB specimens. They were assigned to phenylalanine and tyrosine. Based on the spectroscopic data, classification algorithms including support vector machine, k-nearest neighbors and long short-term memory (LSTM) were successfully applied to discriminate GCTB from adjacent normal tissues of both the FFPE and frozen specimens, with the accuracy ranging from 82.8% to 94.5%. Importantly, our LSTM algorithm showed the best performance in the discrimination of the frozen specimens, with a sensitivity and specificity of 93.9% and 95.1% respectively, and the AUC was 0.97. The results of our study suggest that confocal Raman spectroscopy accomplished by the LSTM network could non-destructively evaluate a tumor margin by its inherent biochemical specificity which may allow intraoperative assessment of the adequacy of tumor clearance.


Subject(s)
Deep Learning , Giant Cell Tumors , Algorithms , Humans , Spectrum Analysis, Raman/methods , Support Vector Machine
2.
Virusdisease ; 32(2): 244-250, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34350314

ABSTRACT

Flow cytometry analysis was carried out to detect the progression of apoptosis in haemocytes of WSSV infected Penaeus vannamei at different time-points (1.5 hpi, 18 hpi and 56 hpi). Apoptosis in haemocytes was found to increase with time of infectivity from 5.06 to 69.63%. Quantitative real-time PCR (qPCR) was used for the expression analysis of four apoptosis-related genes such as Death-associated protein 1, caspase-5, translationally controlled tumor protein, and cathepsin D. The evidence of apoptosis in haemocytes of P. vannamei was established as shown by significant increase in the percentage of late apoptotic cells due to WSSV infection in shrimp. The present study gives an insight to the apoptosis rate in a WSSV infected shrimp during the course of infection and the role of apoptosis related genes.

3.
Sci Rep ; 11(1): 13633, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34211034

ABSTRACT

The beneficial effects of two probiotic bacterial strains Marinilactibacillus piezotolerans and Novosphingobium sp. during the culture of Indian white shrimp, Penaeus indicus, under biofloc and clear water system were evaluated. The experimental variation were CW1 (M. piezotolerans in clear water), BFT1 (biofloc + M. piezotolerans), CW2 (Novosphingobium sp. in clear water), BFT2 (biofloc + Novosphingobium sp.) and control (without bacterial strains and biofloc). Growth and survival considerably increased in probiotic bio-augmented treatments. Probiotic incorporation significantly improved water quality, especially ammonia reduction. Microbiota analysis from gut samples taken from different treatments revealed varied microbial population structure among clear water culture, biofloc culture and control. Proteobacteria and Firmicutes were the top phyla observed in the treatments which were significantly higher in bio-augmented systems than the control. Vibrio genera were predominantly observed in control and clear water system compared to that of biofloc systems. Immune genes were significantly altered in response to probiotic gut microbial supplementation than the control. Higher gene expression profile of important immune genes was observed in the biofloc reared shrimps. Expression of digestive enzyme related genes such as trypsin, chymotrypsin, cathepsin L, cathepsin B and alpha amylase were also upregulated significantly in probiotic supplementation especially in the biofloc treatments. Proteomic analysis of hepatopancreas of shrimps from different treatments was carried out by using 2D gel electrophoresis and MALDI-TOF analysis. The proteins were mostly related to growth and stress tolerance. Eukaryotic initiation factor 4E binding protein was expressed in all the groups and it was high in biofloc treated animals followed by animals treated solely with probiotics compared to those of control groups. The results concludes that biofloc already proved as an effective culture method for healthy shrimp production and supplementation of probiotic bacterial strains registered additional benefit for growth, survival, microbial, immunological status of P, indicus culture.


Subject(s)
Aquaculture , Penaeidae/growth & development , Probiotics , Animals , Aquaculture/methods , Bacteria/enzymology , Bacteria/isolation & purification , Gastrointestinal Microbiome , Penaeidae/microbiology , Probiotics/analysis , Water Microbiology , Water Quality
4.
Lett Appl Microbiol ; 73(1): 96-106, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33780023

ABSTRACT

The study reports diversity in nitrifying microbial enrichments from low (0·5-5‰) and high (18-35‰) saline ecosystems. Microbial community profiling of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) enrichments was analysed by sequencing 16S rRNA and was processed using Mothur pipeline. The α-diversity indices showed the richness of nitrifying bacterial consortia from the high saline environment and were clustering based on the source of the sample. AOB and NOB enrichments from both the environments showed diverse lineages of phyla distributed in both groups with 38 and 34 phyla from low saline and 53 and 40 phyla in high saline sources, respectively. At class level, α- and γ-proteobacteria were found to be more dominant in both the enrichments. AOBs and NOBs in enrichments from low saline environments were dominated by Nitrosomonadaceae, Gallionellaceae (Nitrotoga sp.) and Ectothiorhodospiraceae and Nitrospira, respectively. Though Chromatiaceae were present in both AOB and NOB enrichments, Nitrosoglobus and Nitrosococcus dominated the AOBs while NOBs were dominated by uncultured genera, whereas Rhizobiales were found in both the enrichments. AOBs and NOBs in enrichments from high saline environments were dominated by Nitrospira-like AOBs, Nitrosomonas and Nitrosococcus genera, whereas ammonia-oxidizing archaea (AOA) group included Nitrosopumilus and Nitrososphaera genera comprising and Nitrospirae, respectively. The majority of the genera obtained in both the salinities were found to be either uncultured or unclassified groups. Results of the study suggest that the AOB and NOB consortia have unique and diverse microbes in each of the enrichments, capable of functioning in aquaculture systems practised at different salinities (0-60 ppt).


Subject(s)
Archaea/genetics , Bacteria/genetics , Biodiversity , Microbiota/physiology , Saline Waters , Salinity , Nitrification , Population Density , RNA, Ribosomal, 16S/genetics
5.
J Orthop Res ; 38(2): 297-310, 2020 02.
Article in English | MEDLINE | ID: mdl-31471919

ABSTRACT

Giant cell tumor of bone (GCTB) is a locally aggressive destructive bone lesion. The management of pulmonary metastasis and local recurrence after the surgical treatment of GCTB remains a challenge. Pathologically, stromal cells in GCTB are known as primary neoplastic cells and are recognized as incompletely differentiated preosteoblasts. Therefore, inducing GCTB stromal cells to differentiate into cells with a mature osteoblastic phenotype may stop tumor growth and recurrence. In this study, we aimed to investigate how simvastatin, a clinically approved and commonly used statin that has been known to promote the maturation of cells of the osteogenic lineage, affects GCTB stromal cells. We found that simvastatin effectively inhibited cell viability by suppressing proliferation and by inducing apoptosis in GCTB stromal cells. Moreover, simvastatin treatment upregulated the expression of genes related to osteogenic maturation, such as runt-related transcription factor 2, osteopontin, and osteocalcin, and increased the mineralization of the extracellular matrix in GCTB stromal cells. Ingenuity pathway analysis was used to discover that the vitamin D receptor pathway was involved in the simvastatin-induced osteogenic differentiation of GCTB stromal cells by upregulating the 1,25-dihydroxyvitamin D metabolism. Taken together, this in vitro study demonstrates the antitumor and differentiation-promoting effects of simvastatin on GCTB stromal cells and suggests the possibility of using simvastatin as an adjuvant therapy for GCTB. These findings support further clinical investigation of the efficacy of using simvastatin as an adjuvant therapy for GCTB to reduce recurrence and distant metastasis after surgical treatment. © 2019 Orthopedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:297-310, 2020.


Subject(s)
Giant Cell Tumor of Bone/drug therapy , Hypolipidemic Agents/therapeutic use , Simvastatin/therapeutic use , Cell Differentiation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Giant Cell Tumor of Bone/metabolism , Humans , Hypolipidemic Agents/pharmacology , Simvastatin/pharmacology , Stromal Cells/drug effects , Stromal Cells/metabolism , Vitamin D/analogs & derivatives , Vitamin D/metabolism
6.
Dev Comp Immunol ; 104: 103564, 2020 03.
Article in English | MEDLINE | ID: mdl-31816330

ABSTRACT

Since the 1990s White Spot Syndrome Virus (WSSV) has severely affected shrimp aquaculture worldwide causing a global pandemic of White Spot Disease (WSD) in penaeid culture. However, not all decapod species that can be infected by WSSV show the same susceptibility to the virus, thus raising interesting questions regarding the potential genetic traits that might confer resistance to WSSV. In order to shed light into the genetic markers of WSSV resistance, we employed a dual approach: i) we initially analysed the transcriptomes derived from the hepatopancreas of two species, the susceptible white shrimp Litopenaeus vannamei and the refractory fresh water prawn Macrobrachium rosenbergii, both infected with WSSV. We found a large number of differentially expressed genes (DEGs) belonging to the immune system (mostly anti-microbial peptides and haemolymph clotting components) that were generally up-regulated in M. rosenbergii and down-regulated in L. vannamei. Further, in both species we identified many up-regulated DEGs that were related to metabolism (suggesting a metabolic shift during the infection) and, interestingly, in L. vannamei only, we found several DEGs that were related to moult and suggested an inhibition of the moult cycle in this species following WSSV infection. ii) we then identified a limited number of genetic markers putatively linked with WSD tolerance by employing an ecological genomics approach in which we compared published reports with our own RNA-seq datasets for different decapod species infected with WSSV. Using this second comparative approach, we found nine candidate genes which are consistently down-regulated in susceptible species and up-regulated in refractory species and which have a role in immune response. Together our data offer novel insights into gene expression differences that can be found in susceptible and refractory decapod species infected with WSSV and provide a valuable resource towards our understanding of the potential genetic basis of tolerance to WSSV.


Subject(s)
Hepatopancreas/physiology , Palaemonidae/physiology , Penaeidae/physiology , White spot syndrome virus 1/physiology , Animals , Aquaculture , Disease Susceptibility , Immunity, Innate/genetics , Palaemonidae/virology , Penaeidae/virology , Pore Forming Cytotoxic Proteins/genetics , Transcriptome
7.
Sci Rep ; 9(1): 13509, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31534145

ABSTRACT

Shrimp aquaculture is severely affected by WSSV. Despite an increasing effort to understand host/virus interaction by characterizing changes in gene expression (GE) following WSSV infection, the majority of published studies have focussed on a single time-point, providing limited insight on the development of host-pathogen interaction over the infection cycle. Using RNA-seq, we contrasted GE in gills of Litopenaeus vannamei at 1.5, 18 and 56 hours-post-infection (hpi), between WSSV-challenged and control shrimps. Time course analysis revealed 5097 differentially expressed genes: 63 DEGs were viral genes and their expression in WSSV group either peaked at 18 hpi (and decreased at 56 hpi) or increased linearly up to 56 hpi, suggesting a different role played by these genes during the course of infection. The remaining DEGs showed that WSSV altered the expression of metabolic, immune, apoptotic and cytoskeletal genes and was able to inhibit NF-κB and JAK/STAT pathways. Interestingly, GE changes were not consistent through the course of infection but were dynamic with time, suggesting the complexity of host-pathogen interaction. These data offer novel insights into the cellular functions that are affected during the course of infection and ultimately provide a valuable resource towards our understanding of the host-pathogen dynamics and its variation with time.


Subject(s)
Host-Pathogen Interactions/genetics , Penaeidae/genetics , White spot syndrome virus 1/genetics , Animals , Aquaculture/methods , Decapoda/genetics , Genes, Viral/genetics , Gills/metabolism , Host-Pathogen Interactions/immunology , Immunity, Innate/genetics , Infections/genetics , Longitudinal Studies , Penaeidae/virology , Transcriptome/genetics , White spot syndrome virus 1/pathogenicity
8.
Fish Shellfish Immunol ; 93: 288-295, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31330255

ABSTRACT

In recent years, the importance of viral and host microRNAs (miRNAs) in mediating viral replication and control of host cellular machinery, has been realised and increasing efforts have been taken in order to understand the interactions of miRNAs from host and pathogen during infection. However, all existing studies has thus far been conducted in controlled experimental conditions and the veracity of these data for field conditions are yet to be established. In this framework, small RNA sequencing was performed to identify the miRNAs involved in shrimp (Penaeus vannamei) immune responses under two different WSSV infection conditions of natural infection and experimentally challenged conditions. The expression profiles of miRNAs of shrimp infected with WSSV under two contrasting conditions were compared and as a result, 23365 known miRNAs and 481 novel miRNAs were identified. Amongst the most abundantly expressed miRNAs, the hypoxia related miR-210 and immune pathway related miR-29b were expressed only in infected shrimps of both conditions. miR-8-5p, having a functional role in modulation of chitin biosynthesis was exclusively represented in higher numbers in the WSSV -infected shrimps under natural conditions whilst four of the miRNAs (mja-miR-6493-5p, mja-miR-6492, mmu-miR-3968, tcf-miR-9b-5p) identified from shrimps collected from pond culture targeted chitinase, an important enzyme involved in growth and moulting in shrimps, indicating an interaction between WSSV infection and moult cycle under culture conditions. Some of the miRNAs (tca-miR-87b-3p, cte-miR-277a) and miRNAs belonging to class miR-9, miR-981 that were identified only in WSSV infected shrimps under experimental conditions, are known to respond against WSSV infection in shrimps. Moreover, the miRNA target prediction revealed several immune-related gene targets such as cathepsin, c-type lectin, haemocyanin and ubiquitin protein ligase were commonly identified under both the conditions. However, the miRNAs identified from challenge experiment had wide number of gene targets as compared to the miRNAs of natural infection. The shrimp miRNA mja-miR-6489-3p, was also found to target early virus gene wsv001 of WSSV. Our study, therefore, provides the comparative analysis of miRNA expression from shrimp during WSSV infection in two different conditions.


Subject(s)
Immunity, Innate/genetics , MicroRNAs/genetics , Penaeidae/genetics , Penaeidae/immunology , Transcriptome/immunology , White spot syndrome virus 1/physiology , Animals , Host-Pathogen Interactions , MicroRNAs/immunology
9.
Mol Biol Rep ; 45(5): 951-960, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30008142

ABSTRACT

Flow cytometry was used for estimating the genome size of five brackishwater finfish and four shrimp species. The genome size for Lutjanus argentimaculatus was 0.95 ± 0.10 and 0.79 ± 0.01 pg for Scatophagus argus. The genome sizes for Chanos chanos (0.72 ± 0.01 pg), Etroplus suratensis (1.71 ± 0.16 pg) and Liza macrolepis (0.87 ± 0.02 pg) which are important aquaculture species are reported for the first time in this study. The phylogenetic tree constructed using sixty-seven sequence accessions of cytochrome c oxidase subunit 1 (COI) gene of Lates calcarifer revealed two separate clades. The Indian Lates calcarifer species with estimated genome size of 0.44 ± 0.02 pg belonged to a clade different than that of South East Asia and Australia reported to have larger genome size. The genome size for the four major species of genus Penaeus (Penaeus monodon, Penaeus indicus, Penaeus vannamei and Penaeus japonicus) were found in similar range. The genome size of female shrimps ranged from 2.91 ± 0.03 pg (P. monodon) to 2.14 ± 0.02 pg (P. japonicus). In male shrimps, the genome size ranged from 2.86 ± 0.06 pg (P. monodon) to 2.19 ± 0.02 pg (P. indicus). Significant difference was observed in the genome size between male and female shrimp of all species except in P. monodon. The highest relative difference of 12.78% was observed in the genome size between the either sex in P. indicus. The interspecific relative difference of 30.59% in genome size was highest between the male shrimps of P. monodon and P. indicus and 35.98% between the female shrimps of P. monodon and P. japonicus. The stored gills and pleopod tissues could be successfully used up to 3 weeks to estimate the genome size in shrimps.


Subject(s)
Fishes/genetics , Genome Size/genetics , Penaeidae/genetics , Animals , Aquaculture , Female , Flow Cytometry/methods , Genome/genetics , Male , Phylogeny , Saline Waters
10.
Genome Announc ; 6(8)2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29472330

ABSTRACT

White spot syndrome virus is a major pathogen of shrimp, causing economic loss to the aquaculture industry. For the first time, a complete de novo genome of an Indian isolate of this virus has been deciphered using Illumina and Nanopore sequencing technologies. The genome has 280,591 bp with 442 predicted coding genes.

11.
Fish Shellfish Immunol ; 70: 252-259, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28882801

ABSTRACT

White spot syndrome virus, continues to cause huge economic loss to aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand the host pathogen interaction at the molecular level. Suppression subtractive hybridization (SSH) cDNA library was constructed which led to identification of several differentially expressed genes in response to WSSV infection in Penaeus monodon. The genes expressed in SSH cDNA library of shrimp gill and gut tissues belonged to a wide range of biological functions. The three differentially expressed genes, Single von Willebrand factor type C domain protein (pmSVC), P53 protein gene (pmP53) and ADP ribosylation factor (pmArf) were up-regulated against WSSV infection and were further characterized by gene silencing to study the role of these shrimp immune genes on WSSV multiplication. The sequence-specific knock down of pmSVC, pmP53 and pmArf using the dsRNA revealed that in pmSVC-dsRNA inoculated shrimps WSSV replication was more with increased viral copy numbers when compared with pmP53-dsRNA and pmArf -dsRNA inoculated shrimps. The varied response of immune genes to WSSV infection, indicated that host genes may either inhibit virus replication to some extent or might act as a target to facilitate viral pathogenesis.


Subject(s)
Arthropod Proteins/genetics , Arthropod Proteins/immunology , Gene Silencing , Immunity, Innate , Penaeidae/genetics , Penaeidae/immunology , White spot syndrome virus 1/physiology , Animals , Gene Library , Host-Pathogen Interactions , RNA Interference , Virus Replication
12.
Methods Enzymol ; 578: 373-428, 2016.
Article in English | MEDLINE | ID: mdl-27497175

ABSTRACT

Membrane transporters mediate one of the most fundamental processes in biology. They are the main gatekeepers controlling active traffic of materials in a highly selective and regulated manner between different cellular compartments demarcated by biological membranes. At the heart of the mechanism of membrane transporters lie protein conformational changes of diverse forms and magnitudes, which closely mediate critical aspects of the transport process, most importantly the coordinated motions of remotely located gating elements and their tight coupling to chemical processes such as binding, unbinding and translocation of transported substrate and cotransported ions, ATP binding and hydrolysis, and other molecular events fueling uphill transport of the cargo. An increasing number of functional studies have established the active participation of lipids and other components of biological membranes in the function of transporters and other membrane proteins, often acting as major signaling and regulating elements. Understanding the mechanistic details of these molecular processes require methods that offer high spatial and temporal resolutions. Computational modeling and simulations technologies empowered by advanced sampling and free energy calculations have reached a sufficiently mature state to become an indispensable component of mechanistic studies of membrane transporters in their natural environment of the membrane. In this article, we provide an overview of a number of major computational protocols and techniques commonly used in membrane transporter modeling and simulation studies. The article also includes practical hints on effective use of these methods, critical perspectives on their strengths and weak points, and examples of their successful applications to membrane transporters, selected from the research performed in our own laboratory.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Transport Proteins/chemistry , Molecular Dynamics Simulation , Binding Sites , Biological Transport , Escherichia coli/chemistry , Escherichia coli/metabolism , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation , Static Electricity , Substrate Specificity , Thermodynamics
13.
Phytother Res ; 30(7): 1119-27, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27020843

ABSTRACT

Soluble epoxide hydrolase (sEH) inhibitors have been reported to improve penile erection; therefore, sEH could be useful for management of erectile dysfunction. Methanolic and aqueous extracts of 30 Indian medicinal plants were screened for their sEH inhibition potential. Fifteen extracts showed >50% inhibition when screened at 50 µg/mL in sEH inhibition assay. Methanolic extract of Moringa oleifera Lam. (Moringaceae) seeds (MEMO) was most potent with IC50 1.7 ± 0.1 µg/mL and was selected for in vitro studies on isolated rat corpus cavernosum smooth muscle and in vivo sexual behaviour studies on healthy and diabetic rats. Rats were divided into five groups, each containing six animals and treated orally with either water, vehicle (1% Tween-20), MEMO (45 and 90 mg/kg/day for 21 days), and standard drug, sildenafil (5 mg/kg/day for 7 days). An equal number of female rats were used, and the effect of MEMO and sildenafil was compared with that of vehicle. MEMO significantly relaxed isolated rat corpus cavernosum smooth muscle at 0.1-100 µg/mL in vitro and significantly increased (p < 0.05) sexual activity, intracavernous pressure/mean arterial pressure in normal and diabetic rats. The increase in erectile function of rats by MEMO could be because of its sEH inhibitory activity. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Aphrodisiacs/pharmacology , Epoxide Hydrolases/physiology , Moringa oleifera , Penile Erection/drug effects , Plant Extracts/pharmacology , Animals , Arterial Pressure/drug effects , Epoxide Hydrolases/antagonists & inhibitors , Female , Intracranial Pressure/drug effects , Male , Rats
14.
Virusdisease ; 26(1-2): 9-18, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26436116

ABSTRACT

White spot syndrome virus (WSSV) continues to be the most devastating viral pathogen infecting penaeid shrimp the world over. The genome of WSSV has been deciphered and characterized from three geographical isolates and significant progress has been made in developing various molecular diagnostic methods to detect the virus. However, the information on host immune gene response to WSSV pathogenesis is limited. Microarray analysis was carried out as an approach to analyse the gene expression in black tiger shrimp Penaeus monodon in response to WSSV infection. Gill tissues collected from the WSSV infected shrimp at 6, 24, 48 h and moribund stage were analysed for differential gene expression. Shrimp cDNAs of 40,059 unique sequences were considered for designing the microarray chip. The Cy3-labeled cRNA derived from healthy and WSSV-infected shrimp was subjected to hybridization with all the DNA spots in the microarray which revealed 8,633 and 11,147 as up- and down-regulated genes respectively at different time intervals post infection. The altered expression of these numerous genes represented diverse functions such as immune response, osmoregulation, apoptosis, nucleic acid binding, energy and metabolism, signal transduction, stress response and molting. The changes in gene expression profiles observed by microarray analysis provides molecular insights and framework of genes which are up- and down-regulated at different time intervals during WSSV infection in shrimp. The microarray data was validated by Real Time analysis of four differentially expressed genes involved in apoptosis (translationally controlled tumor protein, inhibitor of apoptosis protein, ubiquitin conjugated enzyme E2 and caspase) for gene expression levels. The role of apoptosis related genes in WSSV infected shrimp is discussed herein.

15.
PLoS One ; 10(5): e0125673, 2015.
Article in English | MEDLINE | ID: mdl-25946465

ABSTRACT

OBJECTIVES: Obesity is an increasing public health problem affecting young people. The causes of obesity are multi-factorial among Chinese youth including lack of physical activity and poor eating habits. The use of an internet curriculum and cell phone reminders and texting may be an innovative means of increasing follow up and compliance with obese teens. The objectives of this study were to determine the feasibility of using an adapted internet curriculum and existing nutritional program along with cell phone follow up for obese Chinese teens. DESIGN AND METHODS: This was a randomized controlled study involving obese teens receiving care at a paediatric obesity clinic of a tertiary care hospital in Hong Kong. Forty-eight subjects aged 12 to 18 years were randomized into three groups. The control group received usual care visits with a physician in the obesity clinic every three months. The first intervention (IT) group received usual care visits every three months plus a 12-week internet-based curriculum with cell phone calls/texts reminders. The second intervention group received usual care visits every three months plus four nutritional counselling sessions. RESULTS: The use of the internet-based curriculum was shown to be feasible as evidenced by the high recruitment rate, internet log-in rate, compliance with completing the curriculum and responses to phone reminders. No significant differences in weight were found between IT, sLMP and control groups. CONCLUSION: An internet-based curriculum with cell phone reminders as a supplement to usual care of obesity is feasible. Further study is required to determine whether an internet plus text intervention can be both an effective and a cost-effective adjunct to changing weight in obese youth. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR-TRC-12002624.


Subject(s)
Internet , Pediatric Obesity/therapy , Risk Reduction Behavior , Text Messaging , Weight Reduction Programs/methods , Adolescent , Child , China , Cost-Benefit Analysis , Counseling/methods , Female , Focus Groups , Humans , Life Style , Male , Nutrition Assessment , Nutritional Status/physiology , Obesity , Weight Loss
16.
Adv Health Sci Educ Theory Pract ; 20(4): 885-901, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25413583

ABSTRACT

Virtual patients are computerised representations of realistic clinical cases. They were developed to teach clinical reasoning skills through delivery of multiple standardized patient cases. The anesthesia course at The Chinese University of Hong Kong developed two novel types of virtual patients, formative assessment cases studies and storyline, to teach its final year medical students on a 2 week rotational course. Acute pain management cases were used to test if these two types of virtual patient could enhance student learning. A 2 × 2 cross over study was performed in academic year 2010-2011 on 130 students divided into four groups of 32-34. Performance was evaluated by acute pain management items set within three examinations; an end of module 60-item multiple choice paper, a short answer modified essay paper and the end of year final surgery modified essay paper. The pain management case studies were found to enhanced student performance in all three examinations, whilst the storyline virtual patient had no demonstrable effect. Student-teaching evaluation questionnaires showed that the case studies were favored more than the storyline virtual patient. Login times showed that students on average logged onto the case studies for 6 h, whereas only half the students logged on and used the storyline virtual patient. Formative assessment case studies were well liked by the students and reinforced learning of clinical algorithms through repetition and feedback, whereas the educational role of the more narrative and less interactive storyline virtual patient was less clear .


Subject(s)
Anesthesiology/education , Computer Simulation , Education, Medical, Undergraduate/methods , Pain Management/standards , Adult , Aged , Curriculum , Educational Measurement , Female , Hong Kong , Humans , Male , Middle Aged
17.
J Fish Dis ; 38(7): 599-612, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24953507

ABSTRACT

Viral disease outbreaks are a major concern impeding the development of the shrimp aquaculture industry. The viral disease due to white spot syndrome virus (WSSV) observed in early 1990s still continues unabated affecting the shrimp farms and cause huge economic loss to the shrimp aquaculture industry. In the absence of effective therapeutics to control WSSV, it is important to understand viral pathogenesis and shrimp response to WSSV at the molecular level. Identification and molecular characterization of WSSV proteins and receptors may facilitate in designing and development of novel therapeutics and antiviral drugs that may inhibit viral replication. Investigations into host-pathogen interactions might give new insights to viral infectivity, tissue tropism and defence mechanism elicited in response to WSSV infection. However, due to the limited information on WSSV gene function and host immune response, the signalling pathways which are associated in shrimp pathogen interaction have also not been elucidated completely. In the present review, the focus is on those shrimp proteins and receptors that are potentially involved in virus infection or in the defence mechanism against WSSV. In addition, the major signalling pathways involved in the innate immune response and the role of apoptosis in host-pathogen interaction is discussed.


Subject(s)
Gene Expression Regulation , Host-Pathogen Interactions/physiology , Penaeidae/virology , White spot syndrome virus 1/physiology , Animals , Immunity, Innate/genetics , Penaeidae/immunology , Viral Proteins/genetics , White spot syndrome virus 1/immunology
19.
J Clin Diagn Res ; 8(4): ZD01-2, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24959517

ABSTRACT

This article discusses a case of 5-year-old girl monozygotic twins who were suffering from geographic tongue (GT), a benign inflammatory disorder of the tongue which is characterized by circinate, irregular erythematous lesions on the dorsum and lateral borders of the tongue caused by loss of filiform papillae of the tongue epithelium. Whilst geographic tongue is a common entity, reports on this condition are uncommon in the literature. To best of our knowledge, this is the first report which has described monozygotic twins with geographic tongue in the literature.

20.
Mol Biol Rep ; 41(9): 6275-89, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24973887

ABSTRACT

Four suppression subtractive hybridization (SSH) cDNA libraries were constructed to identify differentially expressed salinity stress responsive genes of black tiger shrimp, Penaeus monodon exposed to high (55 ppt) salinity conditions. One each of the forward and reverse SSH cDNA libraries were developed from the gill and gut tissues of shrimp and clones having inserts larger than 300 bp were unidirectionally sequenced. Based on the sequence homology search, the identified genes were categorized for their putative functions related to a wide range of biological roles, such as nucleic acid regulation and replication, immune response, energy and metabolism, signal transduction, cellular process, structural and membrane proteins, stress and osmoregulation. Gene expression levels in response to high salinity conditions at 2 weeks post salinity stress for some of the differentially expressed genes (Na(+)/K(+)-ATPase α-subunit, glutathione peroxidase, intracellular fatty acid binding protein, elongation factor 2, 14-3-3 like protein, penaeidin, translationally controlled tumor protein, transglutaminase and serine proteinase inhibitor B3) identified from SSH cDNA libraries were analysed by real-time RT-PCR. The highest gene expression levels was observed for Na(+)/K(+)-ATPase α-subunit in gill tissues (15.23-folds) and antennal glands (12.01-folds) and intracellular fatty acid binding protein in gut tissues (14.05-folds) respectively. The differential and significant levels of gene expression indicate the functional role of these genes in shrimp salinity stress adaptive mechanisms.


Subject(s)
Gene Expression Profiling , Penaeidae/genetics , Salinity , Animals , Cloning, Molecular , Gastrointestinal Tract/metabolism , Gene Expression , Gene Library , Gills/metabolism , Signal Transduction , Stress, Physiological/genetics , Subtractive Hybridization Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...