Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38379222

ABSTRACT

Cumin (Cuminum cyminum L.), is an important export-oriented seed spice crop for India. Cumin is popularly used for flavouring food, including soups, pickles and vegetables, and for herbal medicine. India is the largest producer, consumer and exporter of cumin seed with an annual production of 0.795 million tones over an area of 1.09 million hectares. During 2020-21, India exported about 0.299 million tons of cumin worth of Rs 33280 million (Anonymous, 2021). Recently, phytoplasma suspected symptoms were observed in cumin at Agricultural Research Station, Mandor, Jodhpur, Rajasthan, India from 2019. The symptoms related to phytoplasma infection were first recorded after 70-75 days of sowing in the month of January of the years 2019 to 2022. The major symptoms recorded were yellowing, phyllody, witches-broom, yellowing and deformed elongated seeds. Disease incidence was recorded as 0.25-1.0%, 0.5-1.5%, 0.5-2.5 % and 0.5-10.6% during the years 2019, 2020, 2021 and 2022, respectively using quadrate method. In 2022, among different genotypes assessed GC 4, MCU 73, MCU 105, and MCU 32 exhibited lower disease incidences ranging from 0.5% to 1.5%, while MCU 78 recorded the highest disease incidence at 10.6%. To detect the association of phytoplasma with symptomatic cumin samples, genomic DNA was extracted from four representative cumin genotypes (CuPP-MND-01 to CuPP-MND-04) and one asymptomatic cumin plant using the Qiagen DNeasy plant mini kit (Germany). The extracted DNA was amplified using nested PCR assays with universal phytoplasma detection primers for 16S rRNA gene (P1/P7 and R16F2n/R16R2) (Schneider et al., 1995; Gundersen and Lee, 1996) and secA gene specific primers (SecAfor1/SecArev3 followed by nested PCR primers SecAfor5/ SecArev2) (Hodgetts et al. 2008; Bekele et al. 2011). The amplicons of ∼1.25 kb with 16S rRNA gene and ∼600 bp with secA gene specific primers were amplified in all symptomatic cumin plant samples and positive control of brinjal little leaf. PCR amplified products from the four selected positive samples (CuPP-MND-01 to CuPP-MND-04) of 16S rRNA gene and secA gene, were sequenced from both ends. The 1,245 bp sequences were deposited in GenBank (OQ299007-10), which showed 100% sequence identity with each other and 99.4% identity with 'Candidatus Phytoplasma citri' reference strain (GenBank accession: U15442) (Rodrigues Jardim et al. 2023). The phylogenetic analysis and virtual RFLP analysis using 17 restriction enzymes of 16S rRNA gene sequences through iPhyclassifier allowed affiliating the cumin phytoplasma strains with 16SrII-C subgroup strain with a similarity coefficient of 1 to the reference pattern of 16Sr group II, subgroup C (GenBank accession: AJ293216) (Zhao et al. 2009). In addition, the phylogenetic analysis of the secA gene-based sequences (OQ305073-76) further confirmed the close association of 16SrII-C group phytoplasmas with phyllody and witches' broom disease of cumin. Earlier 16SrII-C subgroup phytoplasma has been reported from various crops and weeds in India (Rao et al. 2021). However, no phytoplasma association has been reported earlier with cumin in India and abroad. To the best of our knowledge, this is the first report on the association of 16SrII-C group phytoplasma causing phyllody, witches' broom in cumin genotypes. This report has economic and epidemiological implications and needs immediate attention to reduce export losses due to phytoplasma disease in cumin and to prevent the potential spread to other crops.

2.
Sci Rep ; 14(1): 868, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38195737

ABSTRACT

The present study was conducted to evaluate the genetic variability for morphological and qualitative traits of Coccinia for development of trait specific lines at ICAR-Central Horticultural Experiment Station (CIAH-RS), Panchmahals (Godhra), Gujarat during 2020-2022. In this study, we evaluated 26 gynoecious accessions to assess the genetic divergence through principal component and cluster analysis. The experiment was carried out in a randomized complete block design with three replications under rainfed semi-arid conditions. High values of PCV and GCV were observed for variables such as NFFP (25.13 and 22.20), PL (23.14 and 20.69), FD (24.01 and 21.46), AFW (22.98 and 20.13), NFPY (26.38 and 24.40), FYP (37.57 and 31.29), FY (35.55 and 33.20), AsC (28.65 and 27.73), Ac (24.32 and 21.06), TSS (37.23 and 35.94), DPPHL (20.71 and 20.38), FRAPL (21.08 and 20.92), TPF(20.81 and 20.45) respectively. High heritability coupled with high genetic advance as per cent of mean was observed for vine length (VL), internodal length (IL), number of female flowers per plant (NFFP), fruit length (FL), peduncle length (PL), fruit diameter (FD), average fruit weight (AFW), number of fruit per plant per year (NFPY), fruit yield per plant (FYP), fruit yield (FY), ascorbic acid (AsC), acidity (Ac), total soluble solids (TSS), total phenols in leaves TPL), total flavonoids in leaves TFL, CUPRAC in leaves (CUPRACL), DPPH in leaves (DPPHL), FRAP in leaves (FRAPL), Total phenols in fruits (TPF), Total flavonoids in fruits (TFF), CUPRAC in fruits (CUPRACF) and DPPH in fruits (DPPHF). The FYP exhibited a significant positive correlation with variables like VL (0.6833), IL (0.2991), NFFP (0.8107), FD (0.5245), AFW (0.6766), NFPY (0.7659), ASC (0.4611), TSS (0.5004) and TPF (0.4281). The estimates of genetic parameters revealed scope for further improvement of fruit yield by selection. Of the eight principal components, PC-I through PC-VIII had eigen values greater than 1 and it accounts 85.02% of the total variation for 26 gynoecious accessions of Ivy gourd. The eigen values of PC-I comprised 5.775% of total variation followed by PC-II (4.250%), PC-III (3.175%), PC-IV (2.588%), PC-V (1.828%), PC-VI (1.447%), PC-VII (1.179%) and PC-VIII (1.013%).The cluster VI and cluster I having highest mean values for most of traits under study. Thus, genotypes from the distinct cluster like cluster VI and I for should be used for selection of parents and varietal improvement for further breeding programme in ivy gourd.


Subject(s)
Antioxidants , Cucurbitaceae , Flavonoids , Genetic Variation , Heartburn , Phenols , Plant Breeding
3.
Plant Dis ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38100674

ABSTRACT

Moth bean (Vigna aconitifolia), a drought and heat-resistant legume from the Fabaceae family, is commonly cultivated in arid and semi-arid regions of the Indian subcontinent In September 2022, phyllody symptoms (Figure 1) were observed on 50-days-old moth bean plants at the ICAR-NBPGR research farm in Jodhpur, Rajasthan, India. The disease incidence ranged from 10 to 25%. To investigate the cause, ten symptomatic VacoJod (1-10) and ten asymptomatic VacoJod (11-20) Vigna aconitifolia plants were collected. Insect populations were also collected from the vicinity using the sweep-net method to examine the role of insect vectors. The leafhopper was identified based on morphological characterization as Empoasca sp. at the Division of Entomology, ICAR-IARI, New Delhi. DNA was extracted from midribs of all collected plants and the Empoasca sp., using Qiagen DNeasy Plant Mini Kit and Blood and Tissue kit, respectively. Nested polymerase chain reaction (Nested-PCR) with universal primers P1/P7 and R16F2n/R16R2 (Deng and Hiruki, 1991; Gundersen and Lee, 1996), and secA gene primers (secAfor1/secArev3 and secAfor2/secArev3) (Hodgetts et al., 2008) were employed to determine phytoplasma species association. Out of the 10 symptomatic plants and 10 leafhopper samples, 6 leafhopper samples and all symptomatic plants produced expected band sizes for the 16S rRNA (approximately 1.25 kb) and secA gene (480 bp). The PCR products were cloned, sequenced, and sequences (two each from moth bean and leafhopper) were submitted to NCBI GenBank with accession numbers OP941130, OP941132, OP941133 and OP941134 for 16S rRNA and OP958868, OP958869, OP958870, and OP958871 for secA gene sequences. Nucleotide BLAST analysis of 16S rRNA sequences revealed a minimum of 99.92% similarity with 'Primula acaulis' yellows phytoplasma (KJ494340) from Czech Republic. All 100% hits corresponded to 16SrI-B group phytoplasmas, for example rapeseed phyllody phytoplasma (CP055264) from Taiwan. Similarly, nucleotide BLAST analysis of secA sequences revealed a minimum of 99.15% sequence similarity with Paulownia witches'-broom phytoplasma (secA) (OP124308) from China. All 100% hits were of 16SrI-B group phytoplasmas, for example Ageratum conyzoides yellowing phytoplasma (MW401697, secA) from India. Phylogenetic analysis using MEGA11 (Tamura et al., 2021) clustered the moth bean and Empoasca sp. phytoplasma strains with 16SrI-B phytoplasma reference strains. iPhyClassifier tool classified the 16S rRNA gene sequences into 16Sr group I, subgroup B, with a similarity coefficient of 1.0 (Figure 2a, 2b). This marks the first report of the association of 'Ca. P. asteris' 16SrI-B related phytoplasma strain with moth bean plants globally. The 16SrI-B phytoplasma strain is prevalent in various crops in India (Singh et al., 2023). This report emphasizes the epidemiological studies and highlights the need for further research and preventive measures to manage the spread of this phytoplasma strain, which could impact crop production and food security in hot and dry regions.

4.
Front Plant Sci ; 14: 1148658, 2023.
Article in English | MEDLINE | ID: mdl-37457353

ABSTRACT

Wheat (Triticum aestivum L.) is a staple food crop for the global human population, and thus wheat breeders are consistently working to enhance its yield worldwide. In this study, we utilized a sub-set of Indian wheat mini core germplasm to underpin the genetic architecture for seed shape-associated traits. The wheat mini core subset (125 accessions) was genotyped using 35K SNP array and evaluated for grain shape traits such as grain length (GL), grain width (GW), grain length, width ratio (GLWR), and thousand grain weight (TGW) across the seven different environments (E1, E2, E3, E4, E5, E5, E6, and E7). Marker-trait associations were determined using a multi-locus random-SNP-effect Mixed Linear Model (mrMLM) program. A total of 160 non-redundant quantitative trait nucleotides (QTNs) were identified for four grain shape traits using two or more GWAS models. Among these 160 QTNs, 27, 36, 38, and 35 QTNs were associated for GL, GW, GLWR, and TGW respectively while 24 QTNs were associated with more than one trait. Of these 160 QTNs, 73 were detected in two or more environments and were considered reliable QTLs for the respective traits. A total of 135 associated QTNs were annotated and located within the genes, including ABC transporter, Cytochrome450, Thioredoxin_M-type, and hypothetical proteins. Furthermore, the expression pattern of annotated QTNs demonstrated that only 122 were differentially expressed, suggesting these could potentially be related to seed development. The genomic regions/candidate genes for grain size traits identified in the present study represent valuable genomic resources that can potentially be utilized in the markers-assisted breeding programs to develop high-yielding varieties.

5.
Plant Dis ; 2023 May 02.
Article in English | MEDLINE | ID: mdl-37129349

ABSTRACT

Fenugreek (Trigonella foenum-graecum) is a leafy vegetable and spice crop, native to Indian subcontinent and Eastern Mediterranean region. Phytoplasma infection symptoms were observed in fenugreek at ICAR-National Bureau of Plant Genetic Resources Regional Station, Jodhpur and Agricultural Research Station Mandore Jodhpur, Rajasthan, India. The first appearance of phytoplasma suspected symptoms of little leaf was recorded after 50 days of sowing in the months of January 2022. The major symptoms recorded were virescence, phyllody, shoot proliferation, witches-broom, little leaf, yellowing and overall stunted growth in 146 germplasm accessions at NBPGR research farm, Jodhpur and one major commercially cultivated variety RMT 305 at Mandore Jodhpur. Ten samples from symptomatic and five samples from asymptomatic fenugreek plants were collected and processed for total DNA extraction using the Qiagen DNeasy plant mini kit (Germany). The extracted DNA was amplified using nested PCR assays with universal phytoplasma detection primers for 16S rRNA gene (P1/P7 and R16F2n/R16R2) and secA gene specific primers (SecAfor1/SecArev3 and SecAfor2/SecArev3) (Schneider et al. 1995; Gundersen and Lee 1996; Hodgetts et al. 2008). The amplicons of ∼1.25 kb with 16S rRNA and ∼480 bp with secA gene specific primers were amplified in all symptomatic fenugreek samples. In negative control (asymptomatic plants) no amplification was observed with either of gene specific primers in gel electrophoresis. PCR amplified products from the six selected positive samples (FPP-NBPGR-J-01 to FPP-NBPGR-J-04 and FPP-MND-01 to FPP-MND-02) of 16S rRNA and secA gene, were sequenced from both ends. Sequences were deposited in the NCBI GenBank with accession numbers ON756108-ON756113 for 16S rRNA gene sequences and ON745809 to ON745814 for secA gene sequences. BLAST analysis of 16S rRNA and secA sequences revealed 100% sequence identity among themselves and 99.95 to 100% sequence identity with the earlier reported phytoplasma strains of aster yellows group related phytoplasma strains (GenBank Acc. No. MN239504, MN080270) belonging to Ca. P. asteris (16SrI group). Further analyses of the 16S rRNA and secA gene-based phylogenetic tree and the iPhyClassifier-based virtual RFLP analysis of 16S rRNA gene study demonstrated that the phytoplasma associated with fenugreek phyllody belonged to 16Sr group I ('Ca. P. asteris') and subgroup B (GenBank accession AP006628), with similarity coefficient of 1.0. Earlier association of 16Sr-II-D subgroup (Ca. P. australasiae) with fenugreek as host was reported from Pakistan (Malik et al., 2020). To the best of our knowledge, this is the first report of a 'Ca. P. asteris', 16SrI-B subgroup related phytoplasma strain associated with fenugreek phyllody in the world. The 16SrI-B phytoplasma strain is a widely distributed strain associated with several agricultural and horticultural crops of India (Rao 2021). This is not only the first instance of fenugreek phyllody disease found in India, but also the first instance of fenugreek phyllody caused by 16SrI-B subgroup phytoplasma worldwide. This report has epidemiological significance and needs immediate attention, as fenugreek is one of the most common seed spice crop being grown all over India.

SELECTION OF CITATIONS
SEARCH DETAIL
...