Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Emerg Infect Dis ; 29(9): 1904-1907, 2023 09.
Article in English | MEDLINE | ID: mdl-37610264

ABSTRACT

We detected the DNA of an Anaplasma bovis-like bacterium in blood specimens from 4 patients from the United States with suspected tickborne illnesses. Initial molecular characterization of this novel agent reveals identity to A. bovis-like bacteria detected in Dermacentor variabilis ticks collected from multiple US states.


Subject(s)
Anaplasma , Anaplasmosis , Humans , Anaplasma/genetics , United States/epidemiology , Dermacentor/microbiology , Anaplasmosis/diagnosis
2.
Diagn Microbiol Infect Dis ; 106(4): 116000, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295184

ABSTRACT

This study reports on the validation of a real-time polymerase chain reaction test targeting the vomp region of Bartonella quintana. The assay displayed 100% sensitivity and specificity for the 52 bloods and 159 cultures tested. Molecular diagnosis of Bartonella quintana can aid clinical treatment during acute infection.


Subject(s)
Bartonella henselae , Bartonella quintana , Humans , Bartonella quintana/genetics , Real-Time Polymerase Chain Reaction
3.
PLoS One ; 17(10): e0274946, 2022.
Article in English | MEDLINE | ID: mdl-36215247

ABSTRACT

While risk of fomite transmission of SARS-CoV-2 is considered low, there is limited environmental data within households. This January-April 2021 investigation describes frequency and types of surfaces positive for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) among residences with ≥1 SARS-CoV-2 infection, and associations of household characteristics with surface RT-PCR and viable virus positivity. Of 1232 samples from 124 households, 27.8% (n = 342) were RT-PCR positive with nightstands (44.1%) and pillows (40.9%) most frequently positive. SARS-CoV-2 lineage, documented household transmission, greater number of infected persons, shorter interval between illness onset and sampling, total household symptoms, proportion of infected persons ≤12 years old, and persons exhibiting upper respiratory symptoms or diarrhea were associated with more positive surfaces. Viable virus was isolated from 0.2% (n = 3 samples from one household) of all samples. This investigation suggests that while SARS-CoV-2 on surfaces is common, fomite transmission risk in households is low.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19 Testing , Child , Colorado , Humans , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
4.
Vaccine ; 40(33): 4845-4855, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35803846

ABSTRACT

BACKGROUND: COVID-19 vaccination reduces SARS-CoV-2 infection and transmission. However, evidence is emerging on the degree of protection across variants and in high-transmission settings. To better understand the protection afforded by vaccination specifically in a high-transmission setting, we examined household transmission of SARS-CoV-2 during a period of high community incidence with predominant SARS-CoV-2 B.1.1.7 (Alpha) variant, among vaccinated and unvaccinated contacts. METHODS: We conducted a household transmission investigation in San Diego County, California, and Denver, Colorado, during January-April 2021. Households were enrolled if they had at least one person with documented SARS-CoV-2 infection. We collected nasopharyngeal swabs, blood, demographic information, and vaccination history from all consenting household members. We compared infection risks (IRs), RT-PCR cycle threshold values, SARS-CoV-2 culture results, and antibody statuses among vaccinated and unvaccinated household contacts. RESULTS: We enrolled 493 individuals from 138 households. The SARS-CoV-2 variant was identified from 121/138 households (88%). The most common variants were Alpha (75/121, 62%) and Epsilon (19/121, 16%). There were no households with discordant lineages among household members. One fully vaccinated secondary case was symptomatic (13%); the other 5 were asymptomatic (87%). Among unvaccinated secondary cases, 105/108 (97%) were symptomatic. Among 127 households with a single primary case, the IR for household contacts was 45% (146/322; 95% Confidence Interval [CI] 40-51%). The observed IR was higher in unvaccinated (130/257, 49%, 95% CI 45-57%) than fully vaccinated contacts (6/26, 23%, 95% CI 11-42%). A lower proportion of households with a fully vaccinated primary case had secondary cases (1/5, 20%) than households with an unvaccinated primary case (66/108, 62%). CONCLUSIONS: Although SARS-CoV-2 infections in vaccinated household contacts were reported in this high transmission setting, full vaccination protected against SARS-CoV-2 infection. These findings further support the protective effect of COVID-19 vaccination and highlight the need for ongoing vaccination among eligible persons.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , California/epidemiology , Colorado/epidemiology , Humans
5.
JAMA Intern Med ; 182(7): 701-709, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35486394

ABSTRACT

Importance: As self-collected home antigen tests become widely available, a better understanding of their performance during the course of SARS-CoV-2 infection is needed. Objective: To evaluate the diagnostic performance of home antigen tests compared with reverse transcription-polymerase chain reaction (RT-PCR) and viral culture by days from illness onset, as well as user acceptability. Design, Setting, and Participants: This prospective cohort study was conducted from January to May 2021 in San Diego County, California, and metropolitan Denver, Colorado. The convenience sample included adults and children with RT-PCR-confirmed infection who used self-collected home antigen tests for 15 days and underwent at least 1 nasopharyngeal swab for RT-PCR, viral culture, and sequencing. Exposures: SARS-CoV-2 infection. Main Outcomes and Measures: The primary outcome was the daily sensitivity of home antigen tests to detect RT-PCR-confirmed cases. Secondary outcomes included the daily percentage of antigen test, RT-PCR, and viral culture results that were positive, and antigen test sensitivity compared with same-day RT-PCR and cultures. Antigen test use errors and acceptability were assessed for a subset of participants. Results: This study enrolled 225 persons with RT-PCR-confirmed infection (median [range] age, 29 [1-83] years; 117 female participants [52%]; 10 [4%] Asian, 6 [3%] Black or African American, 50 [22%] Hispanic or Latino, 3 [1%] Native Hawaiian or Other Pacific Islander, 145 [64%] White, and 11 [5%] multiracial individuals) who completed 3044 antigen tests and 642 nasopharyngeal swabs. Antigen test sensitivity was 50% (95% CI, 45%-55%) during the infectious period, 64% (95% CI, 56%-70%) compared with same-day RT-PCR, and 84% (95% CI, 75%-90%) compared with same-day cultures. Antigen test sensitivity peaked 4 days after illness onset at 77% (95% CI, 69%-83%). Antigen test sensitivity improved with a second antigen test 1 to 2 days later, particularly early in the infection. Six days after illness onset, antigen test result positivity was 61% (95% CI, 53%-68%). Almost all (216 [96%]) surveyed individuals reported that they would be more likely to get tested for SARS-CoV-2 infection if home antigen tests were available over the counter. Conclusions and Relevance: The results of this cohort study of home antigen tests suggest that sensitivity for SARS-CoV-2 was moderate compared with RT-PCR and high compared with viral culture. The results also suggest that symptomatic individuals with an initial negative home antigen test result for SARS-CoV-2 infection should test again 1 to 2 days later because test sensitivity peaked several days after illness onset and improved with repeated testing.


Subject(s)
COVID-19 , Adult , COVID-19/diagnosis , Child , Cohort Studies , Female , Humans , Prospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
6.
Clin Infect Dis ; 75(1): e122-e132, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35147176

ABSTRACT

BACKGROUND: In Spring 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 (Alpha) became the predominant variant in the United States. Research suggests that Alpha has increased transmissibility compared with non-Alpha lineages. We estimated household secondary infection risk (SIR), assessed characteristics associated with transmission, and compared symptoms of persons with Alpha and non-Alpha infections. METHODS: We followed households with SARS-CoV-2 infection for 2 weeks in San Diego County and metropolitan Denver, January to April 2021. We collected epidemiologic information and biospecimens for serology, reverse transcription-polymerase chain reaction (RT-PCR), and whole-genome sequencing. We stratified SIR and symptoms by lineage and identified characteristics associated with transmission using generalized estimating equations. RESULTS: We investigated 127 households with 322 household contacts; 72 households (56.7%) had member(s) with secondary infections. SIRs were not significantly higher for Alpha (61.0% [95% confidence interval, 52.4-69.0%]) than non-Alpha (55.6% [44.7-65.9%], P = .49). In households with Alpha, persons who identified as Asian or Hispanic/Latino had significantly higher SIRs than those who identified as White (P = .01 and .03, respectively). Close contact (eg, kissing, hugging) with primary cases was associated with increased transmission for all lineages. Persons with Alpha infection were more likely to report constitutional symptoms than persons with non-Alpha (86.9% vs 76.8%, P = .05). CONCLUSIONS: Household SIRs were similar for Alpha and non-Alpha. Comparable SIRs may be due to saturation of transmission risk in households due to extensive close contact, or true lack of difference in transmission rates. Avoiding close contact within households may reduce SARS-CoV-2 transmission for all lineages among household members.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Family Characteristics , Humans , SARS-CoV-2/genetics , United States/epidemiology
7.
J Clin Microbiol ; 59(7): e0298120, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33910966

ABSTRACT

Bacterial vector-borne diseases, including Borrelia species, present a significant diagnostic, clinical, and public health challenge due to their overlapping symptoms and the breadth of causative agents and arthropod vectors. The relapsing fever (RF) borreliae encompass both established and emerging pathogens and are transmitted to humans by soft ticks, hard ticks, or lice. We developed a real-time semimultiplex PCR assay that detects multiple RF borreliae causing human illness and classifies them into one of three groups. The groups are based on genetic similarity and include agents of soft-tick relapsing fever (Borrelia hermsii and others), the emerging hard-tick-transmitted pathogen B. miyamotoi, and the agent of louse-borne relapsing fever (B. recurrentis). The real-time PCR assay uses a single primer pair designed to amplify all known pathogenic RF borreliae and multiple TaqMan probes to allow the detection of and differentiation among the three groups. The assay detects all RF borreliae tested, with an analytical limit of detection below 15 genome equivalents per reaction. Thirty isolates of RF borreliae encompassing six species were accurately identified. Thirty-nine of 41 residual specimens (EDTA whole blood, serum, or plasma) from patients with RF were detected and correctly classified. None of 42 clinical samples from patients with other infections and 46 culture specimens from non-RF bacteria were detected. The development of a single-assay real-time PCR approach will help to improve the diagnosis of RF by simplifying the selection of tests to aid in the clinical management of acutely ill RF patients.


Subject(s)
Borrelia , Relapsing Fever , Animals , Arthropod Vectors , Borrelia/genetics , Humans , Real-Time Polymerase Chain Reaction , Relapsing Fever/diagnosis
8.
Ticks Tick Borne Dis ; 9(2): 390-403, 2018 02.
Article in English | MEDLINE | ID: mdl-29258802

ABSTRACT

The incidence and geographic range of tick-borne illness associated with Ixodes scapularis and Ixodes pacificus have dramatically increased in recent decades. Anaplasmosis, babesiosis, and Borrelia spirochete infections, including Lyme borreliosis, account for tens of thousands of reported cases of tick-borne disease every year. Assays that reliably detect pathogens in ticks allow investigators and public health agencies to estimate the geographic distribution of human pathogens, assess geographic variation in their prevalence, and evaluate the effectiveness of prevention strategies. As investigators continue to describe new species within the Borrelia burgdorferi sensu lato complex and to recognize some Ixodes-borne Borrelia species as human pathogens, assays are needed to detect and differentiate these species. Here we describe an algorithm to detect and differentiate pathogens in unfed I. scapularis and I. pacificus nymphs including Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi sensu stricto, Borrelia mayonii, and Borrelia miyamotoi. The algorithm comprises 5 TaqMan real-time polymerase chain reaction assays and 3 sequencing protocols. It employs multiple targets for each pathogen to optimize specificity, a gene target for I. scapularis and I. pacificus to verify tick-derived DNA quality, and a pan-Borrelia target to detect Borrelia species that may emerge as human disease agents in the future. We assess the algorithm's sensitivity, specificity, and performance on field-collected ticks.


Subject(s)
Algorithms , Anaplasma phagocytophilum/classification , Arachnid Vectors , Babesia/classification , Ixodes , Real-Time Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Animals , Arachnid Vectors/growth & development , Arachnid Vectors/microbiology , Arachnid Vectors/parasitology , Ixodes/growth & development , Ixodes/microbiology , Ixodes/parasitology , Nymph/growth & development , Nymph/microbiology , Nymph/parasitology
9.
J Med Entomol ; 48(4): 884-90, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21845949

ABSTRACT

The American dog tick, Dermacentor variabilis (Say) (Acari: Ixodidae), has been implicated as a potential bridging vector to humans of Francisella tularensis, the etiological agent of tularemia. Since the initial studies evaluating vector competency of D. variabilis were conducted, F. tularensis has been subdivided into subspecies and clades that differ in their geographical distribution in the United States and in the severity of infections caused in humans. Here, we demonstrate that D. variabilis nymphs efficiently acquire, transtadially maintain, and transmit each of the strains tested (clades A1b and A2, and type B). Transmission efficiency by adult females was similarly high among infection groups and ranged from 58% for type B to 89% for A2 infections. In addition, we demonstrated that transmission can occur shortly after tick attachment. These findings support the concept that D. variabilis adults may play a significant role in epizootic transmission of F. tularensis, and as a bridging vector to humans.


Subject(s)
Arachnid Vectors/microbiology , Dermacentor/microbiology , Francisella tularensis/classification , Francisella tularensis/isolation & purification , Tularemia/transmission , Animals , Dermacentor/growth & development , Dogs , Female , Humans , Male , Mice , Nymph/microbiology , Oklahoma
10.
Am J Trop Med Hyg ; 83(3): 645-52, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20810833

ABSTRACT

In the United States, the American dog tick, Dermacentor variabilis (Say) is considered an important biological vector of Francisella tularensis, the etiologic agent of tularemia. In this study, we evaluated the vector efficiency of nymphal D. variabilis infected as larvae with differing clades and subspecies (A1b, A2, and type B) of F. tularensis. In all cases, D. variabilis larvae were able to acquire, maintain, and transstadially transmit F. tularensis. Significant replication of the bacteria also occurred in infected nymphs. Transmission of F. tularensis to Swiss Webster mice was not observed with A1b, and low rates were observed with A2 (8.0%) and type B (13.5%). Negative effects on tick survivorship were also observed for A1b, A2, and type B infections. Our results provide evidence of a high fitness cost and low transmission rates during the immature stages, suggesting that D. variabilis may play a limited role in enzootic maintenance of F. tularensis.


Subject(s)
Dermacentor/microbiology , Francisella tularensis/isolation & purification , Tularemia/transmission , Animals , Dermacentor/growth & development , Dogs , Female , Male , Mice
11.
PLoS One ; 5(4): e10205, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20419133

ABSTRACT

Francisella tularensis subspecies tularensis (type A) and holarctica (type B) are of clinical importance in causing tularemia. Molecular typing methods have further separated type A strains into three genetically distinct clades, A1a, A1b and A2. Epidemiological analyses of human infections in the United States suggest that A1b infections are associated with a significantly higher mortality rate as compared to infections caused by A1a, A2 and type B. To determine if genetic differences as defined by molecular typing directly correlate with differences in virulence, A1a, A1b, A2 and type B strains were compared in C57BL/6 mice. Here we demonstrate significant differences between survival curves for infections caused by A1b versus A1a, A2 and type B, with A1b infected mice dying earlier than mice infected with A1a, A2 or type B; these results were conserved among multiple strains. Differences were also detected among type A clades as well as between type A clades and type B with respect to bacterial burdens, and gross anatomy in infected mice. Our results indicate that clades defined within F. tularensis subsp. tularensis by molecular typing methods correlate with virulence differences, with A1b strains more virulent than A1a, A2 and type B strains. These findings indicate type A strains are not equivalent with respect to virulence and have important implications for public health as well as basic research programs.


Subject(s)
Francisella tularensis/pathogenicity , Virulence/genetics , Animals , Humans , Mice , Mice, Inbred C57BL , Species Specificity , Survival Rate , Tularemia/microbiology , Tularemia/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...