Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3032-3046, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35704542

ABSTRACT

Recent progress in image recognition has stimulated the deployment of vision systems at an unprecedented scale. As a result, visual data are now often consumed not only by humans but also by machines. Existing image processing methods only optimize for better human perception, yet the resulting images may not be accurately recognized by machines. This can be undesirable, e.g., the images can be improperly handled by search engines or recommendation systems. In this work, we examine simple approaches to improve machine recognition of processed images: optimizing the recognition loss directly on the image processing network or through an intermediate input transformation model. Interestingly, the processing model's ability to enhance recognition quality can transfer when evaluated on models of different architectures, recognized categories, tasks, and training datasets. This makes the methods applicable even when we do not have the knowledge of future recognition models, e.g., when uploading processed images to the Internet. We conduct experiments on multiple image processing tasks paired with ImageNet classification and PASCAL VOC detection as recognition tasks. With these simple yet effective methods, substantial accuracy gain can be achieved with strong transferability and minimal image quality loss. Through a user study we further show that the accuracy gain can transfer to a black-box cloud model. Finally, we try to explain this transferability phenomenon by demonstrating the similarities of different models' decision boundaries. Code is available at https://github.com/liuzhuang13/Transferable_RA.

2.
IEEE Trans Pattern Anal Mach Intell ; 39(4): 640-651, 2017 04.
Article in English | MEDLINE | ID: mdl-27244717

ABSTRACT

Convolutional networks are powerful visual models that yield hierarchies of features. We show that convolutional networks by themselves, trained end-to-end, pixels-to-pixels, improve on the previous best result in semantic segmentation. Our key insight is to build "fully convolutional" networks that take input of arbitrary size and produce correspondingly-sized output with efficient inference and learning. We define and detail the space of fully convolutional networks, explain their application to spatially dense prediction tasks, and draw connections to prior models. We adapt contemporary classification networks (AlexNet, the VGG net, and GoogLeNet) into fully convolutional networks and transfer their learned representations by fine-tuning to the segmentation task. We then define a skip architecture that combines semantic information from a deep, coarse layer with appearance information from a shallow, fine layer to produce accurate and detailed segmentations. Our fully convolutional networks achieve improved segmentation of PASCAL VOC (30% relative improvement to 67.2% mean IU on 2012), NYUDv2, SIFT Flow, and PASCAL-Context, while inference takes one tenth of a second for a typical image.

SELECTION OF CITATIONS
SEARCH DETAIL
...