Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cytotherapy ; 26(6): 567-578, 2024 06.
Article in English | MEDLINE | ID: mdl-38493403

ABSTRACT

BACKGROUND AIMS: The CliniMACS Prodigy closed system is widely used for the manufacturing of chimeric antigen receptor T cells (CAR-T cells). Our study presents an extensive immunophenotypic and functional characterization and comparison of the properties of anti-CD19 CAR-T cell products obtained during long (11 days) and short (7 days) manufacturing cycles using the CliniMACS Prodigy system, as well as cell products manufactured from different donor sources of T lymphocytes: from patients, from patients who underwent HSCT, and from haploidentical donors. We also present the possibility of assessing the efficiency of transduction by an indirect method. METHODS: Seventy-six CD19 CAR-T cell products were manufactured using the CliniMACS Prodigy automated system. Immunophenotypic properties, markers of cell activation and exhaustion, antitumor, anti-CD19 specific activity in vitro of the manufactured cell products were evaluated. As an indirect method for assessing the efficiency of transduction, we used the method of functional assessment of cytokine secretion and expression of the CD107a marker after incubation of CAR-T cells with tumor targets. RESULTS: The CliniMACS Prodigy platform can produce a product of CD19 CAR-T cells with sufficient cell expansion (4.6 × 109 cells-median for long process [LP] and 1.6 × 109-for short process [SP]), transduction efficiency (43.5%-median for LP and 41.0%-for SP), represented mainly by T central memory cell population, with low expression of exhaustion markers, and with high specific antitumor activity in vitro. We did not find significant differences in the properties of the products obtained during the 7- and 11-day manufacturing cycles, which is in favor of reducing the duration of production to 7 days, which may accelerate CAR-T therapy. We have shown that donor sources for CAR-T manufacturing do not significantly affect the composition and functional properties of the cell product. CONCLUSIONS: This study demonstrates the possibility of using the CliniMACS Prodigy system with a shortened 7-day production cycle to produce sufficient amount of functional CAR-T cells. CAR transduction efficiency can be measured indirectly via functional assays.


Subject(s)
Antigens, CD19 , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Antigens, CD19/immunology , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tissue Donors , Lymphocyte Activation , Immunophenotyping/methods
2.
Transplant Cell Ther ; 30(4): 435.e1-435.e12, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278183

ABSTRACT

The technique of αß T cell depletion (αßTCD) is a well-established method of hematopoietic stem cell transplantation (HSCT) for children with acute leukemia owing to the low rates of graft-versus-host disease and nonrelapse mortality (NRM). The graft-versus-leukemia effect is generally ascribed to natural killer (NK) cells conserved within the graft. It is not known whether NK-related factors affect the outcome of αßTCD HSCT, however. The aim of this retrospective study was to explore the impact of NK alloreactivity (based on donor-recipient killer immunoglobulin-like receptor [KIR] mismatch), graft NK cell dose, and blood NK cell recovery on day +30 post-HSCT on the incidences of leukemia relapse and NRM. The pediatric acute leukemia cohort comprised 295 patients who underwent their first HSCT from a haploidentical donor in complete remission. During post hoc analysis, the total cohort was divided into subcohorts by diagnosis (acute lymphoblastic leukemia [ALL]/acute myeloid leukemia [AML]), NK alloreactivity prediction (KIR match/KIR mismatch), graft NK cell dose (less than versus greater than the median value), and blood NK cell recovery on day +30 post-HSCT (less than versus greater than the median value). We also investigated the influence of serotherapy (antithymocyte globulin [ATG] group) versus abatacept + tocilizumab combination [aba+toci] group) on relapse risk in the context of KIR mismatch. The risks of relapse and NRM were calculated by the cumulative risk method, and groups were compared using the Gray test. Multivariate analysis revealed no apparent impact of predicted NK alloreactivity or any other studied NK cell-related factors for the entire cohort. For patients with AML, a significantly higher relapse risk associated with high NK cell graft content on the background of no predicted KIR mismatch (P = .002) was shown. Multivariate analysis confirmed this finding (P = .018); on the other hand, for the KIR-mismatched patients, there was a trend toward a lower risk of relapse associated with high NK cell dose. The use of ATG was associated with a trend toward reduced relapse risk (P = .074) in the AML patients. There was no significant impact of NK-related factors in the ALL patients. Overall, the evaluated NK-related factors did not show a clear and straightforward correlation with the key outcomes of HSCT in our cohort of children with acute leukemia. In practice, the data support prioritization of KIR-mismatched donors for patients with AML. Importantly, a potential interaction of KIR ligand mismatch and NK cell content in the graft was identified. Indirect evidence suggests that additional cellular constituents of the graft could influence the function of NK cells after HSCT and affect their role as graft-versus-leukemia effectors.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Child , Retrospective Studies , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia, Myeloid, Acute/therapy , Killer Cells, Natural , Receptors, KIR , Antilymphocyte Serum , T-Lymphocytes , Recurrence
3.
Transplant Cell Ther ; 30(4): 437.e1-437.e11, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286354

ABSTRACT

Mature T/NK-cell lymphomas (MTCLs) are a heterogeneous group of lymphoproliferative disorders, relatively rare in adults and children. Allogeneic hematopoietic stem cell transplantation (HSCT) can be considered in some cases as a consolidation and is the first choice for refractory forms and relapses. We retrospectively analyzed 19 pediatric patients with MTCL who received allogeneic hematopoietic stem cell transplantation from a haploidentical or unrelated donor on the αß T cell depletion platform. Among the studied patients, cutaneous T-cell lymphoma was diagnosed in 5, hepatosplenic γδT-cell lymphoma in 4, ALK-positive anaplastic large cell lymphoma in 9 patients, and 1 had nasal T/NK cell lymphoma. All patients received myeloablative conditioning based on treosulfan or total body irradiation. Non-relapse mortality was 5%, the cumulative incidence of relapse or progression at 5 years was 27%, 5-year event-free survival was 67%, and 5-year overall survival was 78%. Thus, our data support that allogeneic αß T-cell-depleted HSCT can provide long-term overall survival of children with high-risk mature T-cell lymphomas.


Subject(s)
Hematopoietic Stem Cell Transplantation , Lymphoma, Large-Cell, Anaplastic , Lymphoma, T-Cell, Peripheral , Adult , Humans , Child , Retrospective Studies , Neoplasm Recurrence, Local , Lymphoma, T-Cell, Peripheral/pathology
4.
Transplant Cell Ther ; 29(2): 127.e1-127.e9, 2023 02.
Article in English | MEDLINE | ID: mdl-36436779

ABSTRACT

The long-term outcome of allogeneic hematopoietic stem cell transplantation (HSCT) in chemorefractory acute myeloid leukemia (AML) remains suboptimal because of a high relapse rate. Enhancement of conditioning regimens by the incorporation of targeted anti-leukemia agents is a potential approach to improve the efficacy of HSCT. In a pilot trial and extended access cohort, we evaluated the safety and potential value of adding combinations of venetoclax and daratumumab to a preparative regimen among children with chemorefractory acute myeloid leukemia grafted with αß T-cell-depleted peripheral blood stem cells. All 20 patients had active disease status of AML at the time of transplantation. The preparative regimen included myeloablative conditioning based on either total body irradiation or treosulfan. A haploidentical related donor was used as a graft source for all patients. Engraftment was not compromised, and no excess toxicity was noted. Minimal residual disease-negative complete remission was achieved in 17 patients (85%). The cumulative incidence of grade II to IV acute graft-versus-host disease (GVHD) was 17%, and the cumulative incidence of chronic GVHD was 7%. At 2 years, nonrelapse mortality was 10%, relapse incidence was 46%, event-free survival was 44%, and overall survival was 65%. Our data show the possibility of safely adding targeted agents to conditioning regimens; however, no evidence of a significant improvement in long-term transplantation outcomes in this cohort of patients was observed.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Child , Humans , Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Leukemia, Myeloid, Acute/drug therapy , Recurrence
5.
Bone Marrow Transplant ; 58(3): 273-281, 2023 03.
Article in English | MEDLINE | ID: mdl-36456809

ABSTRACT

Graft failure (GF) remains a serious issue of hematopoietic stem cell transplantation (HSCT) in inborn errors of immunity (IEI). Second HSCT is the only salvage therapy for GF. There are no uniform strategies for the second HSCTs and limited data are available on the second HSCT outcomes. 48 patients with various IEI received second allogeneic HSCT from 2013 to 2020. Different conditioning regimens were used, divided into two main groups: containing myeloablative doses of busulfan/treosulfan (n = 19) and lymphoid irradiation 2-6 Gy (n = 22). Irradiation-containing conditioning was predominantly used in suspected immune-mediated rejection of the first graft. Matched unrelated donor was used in 28 patients, mismatched related in 18, and matched related in 1. 35 patients received TCRαß/CD19 graft depletion. The median follow-up time was 2.4 years post-HSCT. One patient died at conditioning. The OS was 0.63 (95% CI: 0.41-0.85) after busulfan/treosulfan and 0.68 (95% CI: 0.48-0.88) after irradiation-based conditioning, p = 0.66. Active infection at HSCT significantly influenced OS: 0.43 (95% CI: 0.17-0.69) versus 0.73 (95% CI: 0.58-0.88) without infection, p = 0.004. The cumulative incidence of GF was 0.15 (95% CI: 0.08-0.29). To conclude, an individualized approach is required for the second HSCT in IEI. Low-dose lymphoid irradiation in suspected immune-mediated GF may be a feasible option.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Busulfan/therapeutic use , Transplantation Conditioning , Graft vs Host Disease/drug therapy
6.
Cancers (Basel) ; 14(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36358863

ABSTRACT

We aimed to develop an antibody panel and data analysis algorithm for multicolor flow cytometry (MFC), which is a reliable method for minimal residual disease (MRD) detection in patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treated with CD19-directed therapy. The development of the approach, which was adapted for the case of possible CD19 loss, was based on the additional B-lineage marker expression data obtained from a study of primary BCP-ALL patients, an analysis of the immunophenotypic changes that occur during blinatumomab or CAR-T therapy, and an analysis of very early CD19-negative normal BCPs. We have developed a single-tube 11-color panel for MFC-MRD detection. CD22- and iCD79a-based primary B-lineage gating (preferably consecutive) was recommended. Based on patterns of antigen expression changes and the relative expansion of normal CD19-negative BCPs, guidelines for MFC data analysis and interpretation were established. The suggested approach was tested in comparison with the molecular techniques: IG/TR gene rearrangement detection by next-generation sequencing (NGS) and RQ-PCR for fusion-gene transcripts (FGTs). Qualitative concordance rates of 82.8% and 89.8% were obtained for NGS-MRD and FGT-MRD results, respectively. We have developed a sensitive and reliable approach that allows MFC-MRD monitoring after CD19-directed treatment, even in the case of possible CD19 loss.

8.
Vox Sang ; 117(6): 853-861, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35332550

ABSTRACT

BACKGROUND AND OBJECTIVES: Implementation of the technique of immunomagnetic selection requires the procurement of a large number of CD34+ cells from haploidentical donors within a single apheresis procedure. The release of stem cells with granulocyte colony-stimulating factor (G-CSF) alone is unsatisfactory in a number of donors, and plerixafor, a CXCR4 chemokine receptor antagonist, could be used as an additional mobilization agent. The aim of our study was to examine whether a lower dose of plerixafor (0.12 mg/kg) can provide sufficient increase in CD34+ cells in the peripheral blood of allogeneic healthy donors in comparison with a historical control group. In addition, we assessed the risk of inability to provide the recipient with a transplant containing the optimal dose of 8-10 × 106 CD34+ cells/kg body weight of the recipient. MATERIALS AND METHODS: In a prospective, single-arm study, we examined the results of 105 mobilizations in healthy adult haploidentical donors with G-CSF and plerixafor at a dose of 0.12 mg/kg. The historical control group consisted of 106 mobilizations with G-CSF and plerixafor at 0.24 mg/kg. RESULTS: The median increase in the number of CD34+ cells from day 4 to day 5 of mobilization was 69 cells/µl (range, 28-240) versus 77 cells/µl (24-217) in the groups of 0.12 and 0.24 mg/kg of plerixafor, respectively (p-value 0.255). The apheresis products contained a median of 14.4 × 106 /kg recipient body weight CD34+ cells versus 12.9 × 106 /kg in the groups that received 0.12 and 0.24 mg/kg of plerixafor, respectively (p-value 0.118). The obtained differences were not significant, which means the application of a decreased dose of plerixafor did not affect the results of mobilization. CONCLUSION: The obtained differences in collection were not significant, and thus the application of a decreased dose of plerixafor did not affect the results of mobilization.


Subject(s)
Cyclams , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds , Adult , Antigens, CD34/metabolism , Benzylamines , Body Weight , Granulocyte Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation/methods , Heterocyclic Compounds/pharmacology , Humans , Prospective Studies , Stem Cells/metabolism
9.
Transplant Cell Ther ; 28(3): 172.e1-172.e4, 2022 03.
Article in English | MEDLINE | ID: mdl-34875404

ABSTRACT

We recently demonstrated that TCRαß+/CD19+ graft depletion successfully prevents severe acute and chronic graft-versus-host disease (GVHD) in pediatric patients with primary immunodeficiencies (PID) receiving transplants from both matched unrelated and mismatched related donors. However, in all patients, short-term post-hematopoietic stem cell transplantation (HSCT) immunosuppressive therapy (IST) was used. There are limited data on TCRαß+/CD19+ graft depletion with no post-HSCT IST implementation. In the current study 74 PID patients who underwent first HSCT from matched unrelated (n=51) or mismatched related donors (n=23) with TCRαß+/CD19+ graft depletion were included. All received as a conditioning regimen a combination of treosulfan with fludarabine and either melphalan or thiotepa. In all, thymoglobulin 5 mg/kg (days -5, -4, -3) and rituximab at day -1 were used. In 48 patients, various approaches to short-term post-transplantation IST were used, and 26 patients received no post-HSCT IST. The rates of engraftment, acute and chronic GVHD, survival, and mortality were similar in those who received and did not receive IST, with a slightly higher incidence of graft rejection in patients not receiving IST: 19% in the non-IST group against 13% in the IST group (P = .41). The incidence of cytomegalovirus reactivation was 50% and 39% (P = .50) and Epstein-Barr virus reactivation 10% and 0 (P = .20) in the IST and non-IST groups, respectively. No grade 4 adverse events were seen in both groups, although in 19 of 40 (47.5%) patients receiving calcineurin inhibitors, the therapy was discontinued before day 45. More robust immune recovery with both T- and B-lymphocytes was observed in the non-IST group. To conclude, TCRαß+/CD19+ in combination with particular serotherapy effectively prevents severe acute and chronic GVHD in PID. Regarding remaining risks of infectious complications and additional drug-related toxicity, there are no benefits to post-HSCT IST use in these patients.


Subject(s)
Epstein-Barr Virus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes , Antigens, CD19 , Child , Epstein-Barr Virus Infections/complications , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Herpesvirus 4, Human , Humans , Immunologic Deficiency Syndromes/drug therapy , Immunosuppressive Agents/therapeutic use , Receptors, Antigen, T-Cell, alpha-beta , Transplantation Conditioning/adverse effects
11.
Nat Commun ; 12(1): 7200, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893603

ABSTRACT

Chimeric antigen receptor (CAR) T cells targeting the CD19 antigen are effective in treating adults and children with B-cell malignancies. Place-of-care manufacturing may improve performance and accessibility by obviating the need to cryopreserve and transport cells to centralized facilities. Here we develop an anti-CD19 CAR (CAR19) comprised of the 4-1BB co-stimulatory and TNFRSF19 transmembrane domains, showing anti-tumor efficacy in an in vivo xenograft lymphoma model. CAR19 T cells are manufactured under current good manufacturing practices (cGMP) at two disparate clinical sites, Moscow (Russia) and Cleveland (USA). The CAR19 T-cells is used to treat patients with relapsed/refractory pediatric B-cell Acute Lymphocytic Leukemia (ALL; n = 31) or adult B-cell Lymphoma (NHL; n = 23) in two independently conducted phase I clinical trials with safety as the primary outcome (NCT03467256 and NCT03434769, respectively). Probability of measurable residual disease-negative remission was also a primary outcome in the ALL study. Secondary outcomes include complete remission (CR) rates, overall survival and median duration of response. CR rates are 89% (ALL) and 73% (NHL). After a median follow-up of 17 months, one-year survival rate of ALL complete responders is 79.2% (95%CI 64.5‒97.2%) and median duration of response is 10.2 months. For NHL complete responders one-year survival is 92.9%, and median duration of response has not been reached. Place-of-care manufacturing produces consistent CAR-T cell products at multiple sites that are effective for the treatment of patients with B-cell malignancies.


Subject(s)
Antigens, CD19/immunology , B-Lymphocytes/immunology , Lymphoma, B-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , Female , Humans , Infant , Male , Mice , Mice, Inbred NOD , Middle Aged , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Progression-Free Survival , Receptors, Antigen, T-Cell , Receptors, Tumor Necrosis Factor/chemistry , Russia , United States , Young Adult
12.
Pediatr Blood Cancer ; 68(11): e29338, 2021 11.
Article in English | MEDLINE | ID: mdl-34520107

ABSTRACT

BACKGROUND: Ineffective erythropoiesis (IE) is the most prominent feature of transfusion-dependent beta-thalassemia (TDT), which leads to extramedullary hemopoiesis. The rejection rate in allogeneic hematopoietic stem cell transplantation (HSCT) is high in heavily transfused patients with TDT accompanied by prominent IE. Therefore, a pretransplantation treatment bridging to HSCT is often used to reduce allosensitization and IE. Ruxolitinib is a JAK-1/JAK-2 inhibitor and has showed its efficacy in suppressing IE and the immune system. A previously published study on RUX in adult patients with TDT has revealed that this treatment significantly reduces spleen size and is well tolerated. PROCEDURE: Ten patients (5-14 years old) with TDT and an enlarged spleen were enrolled. The dose of ruxolitinib was adjusted for age: for patients <11 years: 40-100 mg/m2 total daily dose and for patients >11 years: 20-30 mg/m2 total daily dose. HSCT was performed in 8 of 10 patients. RESULTS: After the first 3 months of ruxolitinib therapy, spleen volume decreased in 9 of 10 cases by 9.1%-67.5% (M = 35.4%) compared with the initial size (P = 0.003). The adverse events of ruxolitinib (infectious complications, moderate thrombocytopenia, and headache) were successfully managed by reducing the dose. The outcomes of HSCT were favorable in seven of eight cases. CONCLUSION: Ruxolitinib is promising as a short-term pre-HSCT treatment for pediatric patients with TDT and pronounced IE.


Subject(s)
Hematopoietic Stem Cell Transplantation , Nitriles/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , beta-Thalassemia , Adolescent , Child , Child, Preschool , Erythropoiesis/drug effects , Humans , beta-Thalassemia/therapy
13.
Br J Haematol ; 194(1): 174-178, 2021 07.
Article in English | MEDLINE | ID: mdl-33843056

ABSTRACT

Blinatumomab with subsequent haematopoietic stem cell transplantation was applied in 13 infants with acute lymphoblastic leukaemia (ALL). Eight patients were treated in first remission due to slow clearance of minimal residual disease (MRD); one for MRD-reappearance after long MRD negativity, one for primary refractory disease and three during relapse treatment. In slow MRD responders, complete MRD response was achieved prior to transplantation, with an 18-month event-free survival of 75%. In contrast, only one of five patients with relapsed/refractory ALL is still in complete remission. These data provide a basis for future studies of immunotherapy in very high-risk infant ALL.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Hematopoietic Stem Cell Transplantation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Salvage Therapy , Child, Preschool , Disease-Free Survival , Female , Histone-Lysine N-Methyltransferase/analysis , Humans , Infant , Kaplan-Meier Estimate , Male , Myeloid-Lymphoid Leukemia Protein/analysis , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recurrence
14.
Transplant Cell Ther ; 27(4): 330.e1-330.e9, 2021 04.
Article in English | MEDLINE | ID: mdl-33836878

ABSTRACT

Depletion of αß T cells from the graft prevents graft-versus-host disease (GVHD) and improves the outcome of hematopoietic stem cell transplantation (HSCT) from haploidentical donors. Delayed recovery of adaptive immunity remains a problem, which can be approached by adoptive T-cell transfer. In a randomized trial, we have assessed the safety and efficacy of low-dose memory (CD45RA-depleted) donor lymphocytes (mDLI) after HSCT with αß T-cell depletion. Antithymocyte globulin (ATG) is viewed as an essential component of preparative regimen, critical for both prevention of graft failure and GVHD. Variable pharmacokinetics of ATG may significantly affect lymphocyte subpopulations after HSCT. To uncover the potential of mDLI, we replaced rabbit ATG with tocilizumab and abatacept. Here we compare post hoc the immune recovery and the key clinical outcomes, including nonrelapse mortality (NRM), overall- and event-free survival (OS and EFS), between the cohort enrolled in the prospective randomized trial and a historical cohort, comprised of patients grafted with a conventional ATG-based HSCT with αß T cell depletion. A cohort of 149 children was enrolled in the prospective trial and 108 patients were selected as historical controls from a prospectively populated database. Patient population was comprised of children with high-risk hematologic malignancies, with more than 90% represented by acute leukemia. Median age at enrollment was 8.8 years. In the prospective cohort 91% of the donors were haploidentical parents, whereas in the historical cohort 72% of the donors were haploidentical. Conditioning was based on either 12Gy total body irradiation or treosulfan. Thiotepa, fludarabine, bortezomib, and rituximab were used as additional agents. Patients in the historical cohort received rabbit ATG at 5 mg/kg total dose, while prospective cohort patients received tocilizumab at 8 mg /kg on day -1 and abatacept at 10 mg/kg on days 0, 7, 14, and 28. Patients in the prospective trial cohort were randomized 1:1 to receive mDLI starting on day 0, whereas 69% of historical cohort patients received mDLI after engraftment, as part of previous trials. Primary engraftment rate was 99% in the prospective cohort and 98% in the historical cohort. The incidence of grade II-IV aGVHD was 13% in the prospective cohort and 16 % in the control group. Chronic GVHD developed among 13% (historical) and 7% (prospective) cohorts (P = .07). The incidence of cytomegalovirus viremia was 51% in the prospective cohort arm and 54% in the historical control arm (p = ns). Overall, in the prospective cohort 2-year NRM was 2%, incidence of relapse was 25%, EFS was 71%, and OS was 80%, whereas in the historical cohort 2-year NRM was 13%, incidence of relapse was 19%, EFS was 67%, and OS was 76%, difference non-significant for relapse and survival. NRM was significantly improved in the ATG-free cohort (P = .002). Recovery of both αß- and γδ- T cells was significantly improved at days +30 and +60 after HSCT in recipients of ATG-free preparative regimens, as well as recovery of naïve T cells. Among the recipients of αß T-cell-depleted grafts, replacement of ATG with nonlymphodepleting abatacept and tocilizumab immunomodulation did not compromise engraftment and GVHD control and was associated with significantly lower NRM and better immune recovery early after HSCT.


Subject(s)
Graft vs Host Disease , Transplantation Conditioning , Graft vs Host Disease/prevention & control , Humans , Prospective Studies , Retrospective Studies , T-Lymphocytes
15.
Br J Haematol ; 193(3): 602-612, 2021 05.
Article in English | MEDLINE | ID: mdl-33715150

ABSTRACT

CD19-directed treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) frequently leads to the downmodulation of targeted antigens. As multicolour flow cytometry (MFC) application for minimal/measurable residual disease (MRD) assessment in BCP-ALL is based on B-cell compartment study, CD19 loss could hamper MFC-MRD monitoring after blinatumomab or chimeric antigen receptor T-cell (CAR-T) therapy. The use of other antigens (CD22, CD10, CD79a, etc.) as B-lineage gating markers allows the identification of CD19-negative leukaemia, but it could also lead to misidentification of normal very-early CD19-negative BCPs as tumour blasts. In the current study, we summarized the results of the investigation of CD19-negative normal BCPs in 106 children with BCP-ALL who underwent CD19 targeting (blinatumomab, n = 64; CAR-T, n = 25; or both, n = 17). It was found that normal CD19-negative BCPs could be found in bone marrow after CD19-directed treatment more frequently than in healthy donors and children with BCP-ALL during chemotherapy or after stem cell transplantation. Analysis of the antigen expression profile revealed that normal CD19-negative BCPs could be mixed up with residual leukaemic blasts, even in bioinformatic analyses of MFC data. The results of our study should help to investigate MFC-MRD more accurately in patients who have undergone CD19-targeted therapy, even in cases with normal CD19-negative BCP expansion.


Subject(s)
Antibodies, Bispecific/administration & dosage , Antigens, CD19/blood , Drug Delivery Systems , Flow Cytometry , Immunotherapy, Adoptive , Neoplasm Proteins/blood , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Child , Child, Preschool , Female , Follow-Up Studies , Humans , Male , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
16.
Bone Marrow Transplant ; 56(7): 1614-1624, 2021 07.
Article in English | MEDLINE | ID: mdl-33594278

ABSTRACT

Depletion of αß T cells from the graft prevents graft-vs.-host disease (GVHD) and improves outcome of HSCT from haploidentical donors. In a randomized trial, we aimed to evaluate the safety and efficacy of low-dose memory (CD45RA-depleted) donor lymphocytes (mDLI) after HSCT with αß T-cell depletion. A cohort of 149 children was enrolled, 76 were randomized to receive scheduled mDLI and 73 received standard care. Conditioning was based on either 12 Gy total body irradiation or treosulfan. Rabbit antithymocyte globulin was replaced by tocilizumab and abatacept. Primary end points were the incidence of acute GVHD grades II-IV and the incidence of cytomegalovirus (CMV) viremia. The incidence of grades II-IV aGVHD was 14% in the experimental arm and 12% in the control arm, p-0.8. The incidence of CMV viremia was 45% in the experimental arm and 55% in the control arm, p-0.4. Overall, in the total cohort 2-year NRM was 2%, cumulative incidence of relapse was 25%, event-free survival 71%, and overall survival 80%, without difference between the study arms. Memory DLI was associated with improved recovery of CMV-specific T-cell responses in a subcohort of CMV IgG seropositive recipients.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Child , Graft vs Host Disease/prevention & control , Humans , Lymphocyte Depletion , Prospective Studies , T-Lymphocytes
18.
Cytometry B Clin Cytom ; 100(5): 568-573, 2021 09.
Article in English | MEDLINE | ID: mdl-33369016

ABSTRACT

BACKGROUND: The presence of minimal/measurable residual disease (MRD) before or after hematopoietic stem cell transplantation (HSCT) is known as a predictor of poor outcome in patients with acute myeloid (AML) or lymphoblastic (ALL) leukemia. When performed with multiparameter flow cytometry (MFC), assessment of residual leukemic cells after HSCT may be limited by therapy-induced shifts in the immunophenotype (e.g., loss of surface molecules used for therapeutic targeting). However, in such cases, questionable cells can be isolated and tested for hematopoietic chimerism to clarify their origin. METHODS: Questionable cell populations were detected during the MFC-based MRD monitoring of 52 follow-up bone marrow samples from 37 patients diagnosed with T cell neoplasms (n =14), B cell precursor ALL (n = 16), AML (n = 7). These cells (suspected leukemic or normal) were isolated by flow cell sorting and tested for hematopoietic chimerism by RTQ-PCR. RESULTS: The origin of cells was successfully identified in 96.15% of cases (n = 50), which helped to validate the results of MFC-based MRD monitoring. CONCLUSIONS: We believe that a combination of MFC, cell sorting, and chimerism testing may help confirm or disprove MRD presence in complicated cases after HSCT.


Subject(s)
Flow Cytometry , Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual/diagnosis , Adolescent , Child , Child, Preschool , Cohort Studies , Hematopoietic Stem Cell Transplantation , Humans , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual/therapy , Transplantation, Homologous
19.
Bone Marrow Transplant ; 56(4): 900-908, 2021 04.
Article in English | MEDLINE | ID: mdl-33203952

ABSTRACT

The delayed recovery of adaptive immunity underlies transplant-related mortality (TRM) after αß T cell-depleted hematopoietic stem cell transplantation (HSCT). We tested the use of low-dose memory donor lymphocyte infusions (mDLIs) after engraftment of αß T cell-depleted grafts.A cohort of 131 pediatric patients (median age 9 years) were grafted with αß T cell-depleted products from either haplo (n = 79) or unrelated donors (n = 52). After engraftment, patients received mDLIs prepared by CD45RA depletion. Cell dose was escalated monthly from 25 × 103 to 100 × 103/kg (haplo) and from 100 × 103 to 300 × 103 /kg (MUD). In a subcohort of 16 patients, T-cell receptor (TCR) repertoire profiling with deep sequencing was used to track T-cell clones and to evaluate the contribution of mDLI to the immune repertoire.In total, 343 mDLIs were administered. The cumulative incidence (CI) of grades II and III de novo acute graft-versus-host disease (aGVHD) was 5% and 2%, respectively, and the CI of chronic graft-versus-host disease was 7%. Half of the patients with undetectable CMV-specific T cells before mDLI recovered CMV-specific T cells. TCR repertoire profiling confirmed that mDLI-derived T cells significantly contribute to the TCR repertoire up to 1 year after HSCT and include persistent, CMV-specific T-cell clones.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Cell Tracking , Child , Humans , Immunologic Memory , Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes
20.
Front Oncol ; 11: 785916, 2021.
Article in English | MEDLINE | ID: mdl-34976825

ABSTRACT

Total body irradiation (TBI) in combination with chemotherapy is widely used as a conditioning regimen in pediatric and adult hematopoietic stem cell transplantation (HSCT). The combination of TBI with chemotherapy has demonstrated superior survival outcomes in patients with acute lymphoblastic and myeloid leukemia when compared with conditioning regimens based only on chemotherapy. The clinical application of intensity-modulated radiation therapy (IMRT)-based methods (volumetric modulated arc therapy (VMAT) and TomoTherapy) seems to be promising and has been actively used worldwide. The optimized conformal total body irradiation (OC-TBI) method described in this study provides selected dose reduction for organs at risk with respect to the most significant toxicity (lungs, kidneys, lenses). This study included 220 pediatric patients who received OC-TBI with subsequent chemotherapy and allogenic HSCT with TCRαß/CD19 depletion. A group of 151 patients received OC-TBI using TomoTherapy, and 40 patients received OC-TBI using the Elekta Synergy™ linac with an Agility-MLC (Elekta, Crawley, UK) using volumetric modulated arc therapy (VMAT). Twenty-nine patients received OC-TBI with supplemental simultaneous boost to bone marrow-(SIB to BM) up to 15 Gy: 28 patients (pts)-TomoTherapy; one patient-VMAT. The follow-up duration ranged from 0.3 to 6.4 years (median follow-up, 2.8 years). Overall survival (OS) for all the patients was 63% (95% CI: 56-70), and event-free survival (EFS) was 58% (95% CI: 51-65). The cumulative incidence of transplant-related mortality (TRM) was 10.7% (95% CI: 2.2-16) for all patients. The incidence of early TRM (<100 days) was 5.0% (95% CI: 1.5-8.9), and that of late TRM (>100 days) was 5.7 (95% CI: 1.7-10.2). The main causes of death for all the patients were relapse and infection. The concept of OC-TBI using IMRT VMAT and helical treatment delivery on a TomoTherapy treatment unit provides maximum control of the dose distribution in extended targets with simultaneous dose reduction for organs at risk. This method demonstrated a low incidence of severe side effects after radiation therapy and predictable treatment effectiveness. Our initial experience demonstrates that OC-TBI appears to be a promising technique for the treatment of pediatric patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...