Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
JAMA Psychiatry ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985492

ABSTRACT

Importance: Bipolar disorder (BD) is chronic and disabling, with depression accounting for the majority of time with illness. Recent research demonstrated a transformative advance in the clinical efficacy of transcranial magnetic stimulation for treatment-resistant major depressive disorder (MDD) using an accelerated schedule of intermittent theta-burst stimulation (aiTBS), but the effectiveness of this treatment for treatment-refractory BD is unknown. Objective: To evaluate the effectiveness of aiTBS for treatment-refractory BD. Design, Setting, and Participants: This randomized clinical trial, conducted from March 2022 to February 2024, included individuals with treatment-resistant BD with moderate to severe depressive episodes referred from the Penn Bipolar outpatient clinic. Included patients had 2 or more prior failed antidepressant trials by Antidepressant Treatment History Form criteria and no other primary psychiatric diagnosis, were receiving a mood stabilizer for 4 or more weeks, and had a Montgomery-Åsberg Depression Rating Scale (MADRS) score of 20 or higher. Intervention: Prior to treatment, resting-state functional magnetic resonance imaging was used to compute personalized left dorsolateral prefrontal cortex target by connectivity to subgenual anterior cingulate cortex. Patients were randomized 1:1 to 10 sessions per day of imaging-guided active or sham aiTBS for 5 days with 1 session per hour at 90% resting motor threshold for 90 000 pulses total. Main Outcome and Measures: The main outcome was repeated MADRS scores before and after treatment. Results: A total of 24 participants (12 [50%] female; 12 [50%] male; mean [SD] age, 43.3 [16.9] years) were randomized to active (n = 12) or sham (n = 12) aiTBS. All participants completed treatment and 1-month follow-up. MADRS scores were significantly lower in the active group (mean [SD], 30.4 [4.8] at baseline; 10.5 [6.7] after treatment) than in the sham group (28.0 [5.4] at baseline; 25.3 [6.7] after treatment) at treatment end (estimated difference, -14.75; 95% CI, -19.73 to -9.77; P < .001; Cohen d, -2.19). Conclusion and Relevance: In this randomized clinical trial, aiTBS was more effective than sham stimulation for depressive symptom reduction in patients with treatment-resistant BD. Further trials are needed to determine aiTBS durability and to compare with other treatments. Trial Registration: ClinicalTrials.gov Identifier: NCT05228457.

2.
Clin Neurophysiol ; 165: 16-25, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38945031

ABSTRACT

OBJECTIVE: Transcranial magnetic stimulation (TMS) can efficiently and robustly modulate synaptic plasticity, but little is known about how TMS affects functional connectivity (rs-fMRI). Accordingly, this project characterized TMS-induced rsFC changes in depressed patients who received 3 days of left prefrontal intermittent theta burst stimulation (iTBS). METHODS: rs-fMRI was collected from 16 subjects before and after iTBS. Correlation matrices were constructed from the cleaned rs-fMRI data. Electric-field models were conducted and used to predict pre-post changes in rs-fMRI. Site by orientation heatmaps were created for vectors centered on the stimulation site and a control site (contralateral motor cortex). RESULTS: For the stimulation site, there was a clear relationship between both site and coil orientation, and connectivity changes. As distance from the stimulation site increased, prediction accuracy decreased. Similarly, as eccentricity from the optimal orientation increased, prediction accuracy decreased. The systematic effects described above were not apparent in the heatmap centered on the control site. CONCLUSIONS: These results suggest that rs-fMRI following iTBS changes systematically as a function of the distribution of electrical energy delivered from the TMS pulse, as represented by the e-field model. SIGNIFICANCE: This finding lays the groundwork for future studies to individualize TMS targeting based on how predicted rs-fMRI changes might impact psychiatric symptoms.

3.
Article in English | MEDLINE | ID: mdl-38740902

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) treatment protocols targeting the right dlPFC have been effective in reducing anxiety symptoms comorbid with depression. However, the mechanism behind these effects is unclear. Further, it is unclear whether these results generalize to non-depressed individuals. We conducted a series of studies aimed at understanding the link between anxiety potentiated startle and the right dlPFC, following a previous study suggesting that continuous theta burst stimulation (cTBS) to the right dlPFC can make people more anxious. Based on these results we hypothesized that intermittent TBS (iTBS), which is thought to have opposing effects on plasticity, may reduce anxiety when targeted at the same right dlPFC region. In this double-blinded, cross-over design, 28 healthy subjects underwent 12 study visits over a 4-week period. During each of their 2 stimulation weeks, they received four 600 pulse iTBS sessions (2/day), with a post-stimulation testing session occurring 24 h following the final iTBS session. One week they received active stimulation, one week they received sham. Stimulation weeks were separated by a 1-week washout period and the order of active/sham delivery was counterbalanced across subjects. During the testing session, we induced anxiety using the threat of unpredictable shock and measured anxiety potentiated startle. Contrary to our initial hypothesis, subjects showed increased startle reactivity following active compared to sham stimulation. These results replicate work from our two previous trials suggesting that TMS to the right dlPFC increases anxiety potentiated startle, independent of both the pattern of stimulation and the timing of the post stimulation measure. Although these results confirm a mechanistic link between right dlPFC excitability and startle, capitalizing upon this link for the benefit of patients will require future exploration.

4.
medRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645124

ABSTRACT

Major depressive disorder (MDD) is a common and often severe condition that profoundly diminishes quality of life for individuals across ages and demographic groups. Unfortunately, current antidepressant and psychotherapeutic treatments exhibit limited efficacy and unsatisfactory response rates in a substantial number of patients. The development of effective therapies for MDD is hindered by the insufficiently understood heterogeneity within the disorder and its elusive underlying mechanisms. To address these challenges, we present a target-oriented multimodal fusion framework that robustly predicts antidepressant response by integrating structural and functional connectivity data (sertraline: R2 = 0.31; placebo: R2 = 0.22). Through the model, we identify multimodal neuroimaging biomarkers of antidepressant response and observe that sertraline and placebo show distinct predictive patterns. We further decompose the overall predictive patterns into constitutive network constellations with generalizable structural-functional co-variation, which exhibit treatment-specific association with personality traits and behavioral/cognitive task performance. Our innovative and interpretable multimodal framework provides novel insights into the intricate neuropsychopharmacology of antidepressant treatment and paves the way for advances in precision medicine and development of more targeted antidepressant therapeutics.

5.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus
Article in English | IBECS | ID: ibc-226357

ABSTRACT

Our objective was to review the literature on the parietal cortex and intraparietal sulcus (IPS) in anxiety-related disorders, as well as opportunities for using neuromodulation to target this region and reduce anxiety. We provide an overview of prior research demonstrating: 1) the importance of the IPS in attention, vigilance, and anxious arousal, 2) the potential for neuromodulation of the IPS to reduce unnecessary attention toward threat and anxious arousal as demonstrated in healthy samples; and 3) limited data on the potential for neuromodulation of the IPS to reduce hyper-attention toward threat and anxious arousal among clinical samples with anxiety-related disorders. Future research should evaluate the efficacy of IPS neuromodulation in fully powered clinical trials, as well as the value in augmenting evidence-based treatments for anxiety with IPS neuromodulation. (AU)


Subject(s)
Humans , Anxiety , Parietal Lobe , Anxiety Disorders , Cognition , Neurotransmitter Agents
6.
medRxiv ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37986856

ABSTRACT

Background: The right dorsolateral prefrontal cortex (dlPFC) has been indicated to be a key region in the cognitive regulation of emotion by many previous neuromodulation and neuroimaging studies. However, there is little direct causal evidence supporting this top-down regulation hypothesis. Furthermore, it is unclear whether contextual threat impacts this top-down regulation. By combining TMS/fMRI, this study aimed to uncover the impact of unpredictable threat on TMS-evoked BOLD response in dlPFC-regulated emotional networks. Based on the previous findings linking the dlPFC to the downregulation of emotional network activity, we hypothesized TMS pulses would deactivate activity in anxiety expression regions, and that threat would reduce this top-down regulation. Methods: 44 healthy controls (no current or history of psychiatric disorders) were recruited to take part in a broader study. Subjects completed the neutral, predictable, and unpredictable (NPU) threat task while receiving TMS pulses to either the right dlPFC or a control region. dlPFC targeting was based on data from a separate targeting session, where subjects completed the Sternberg working memory (WM) task inside the MRI scanner. Results: When compared to safe conditions, subjects reported significantly higher levels of anxiety under threat conditions. Additionally, TMS-evoked responses in the left insula (LI), right sensory/motor cortex (RSM), and a region encompassing the bilateral SMA regions (BSMA) differed significantly between safe and threat conditions. There was a significant TMS-evoked deactivation in safe periods that was significantly attenuated in threat periods across all 3 regions. Conclusions: These findings suggest that threat decreases dlPFC-regulated emotional processing by attenuating the top-down control of emotion, like the left insula. Critically, these findings provide support for the use of right dlPFC stimulation as a potential intervention in anxiety disorders.

7.
medRxiv ; 2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37986871

ABSTRACT

Past research has shown that the bilateral dorsolateral prefrontal cortices (dlPFC) are implicated in both emotional processing as well as cognitive processing, 1,2,3 in addition to working memory 4, 5 . Exactly how these disparate processes interact with one another within the dlPFC is less understood. To explore this, researchers designed an experiment that looked at working memory performance during fMRI under both emotional and non-emotional task conditions. Participants were asked to complete three tasks (letters, neutral images, emotional images) of the Sternberg Sorting Task under one of two trial conditions (sort or maintain). Regions of interest consisted of the left and right dlPFC as defined by brain masks based on NeuroSynth 6 . Results showed a significant main effect of the 'sort' condition on reaction speed for all three trial types, as well as a main effect of task type (letters) on accuracy. In addition, a significant interaction was found between trial type (sort) and task type (letters), but not for either of the picture tasks. These results reveal a discrepancy between BOLD signal and behavioral data, with no significant difference in BOLD activity during image trials being displayed, despite longer response times for every condition. While these results show that the dlPFC is clearly implicated in non-emotional cognitive processing, more research is needed to explain the lack of BOLD activation seen here for similar emotionally valanced tasks, possibly indicating involvement of other brain networks.

8.
J Affect Disord ; 340: 412-419, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37553017

ABSTRACT

BACKGROUND: Numerous studies summarized in a recent meta-analysis have shown sleep deprivation rapidly improves depressive symptoms in approximately 50 % of individuals with major depressive disorder (MDD), however those studies were typically conducted in clinical settings. Here we investigated the effects of sleep deprivation utilizing a highly controlled experimental approach. METHODS: 36 antidepressant-free individuals with MDD and 10 healthy controls (HC) completed a 5 day/4-night protocol consisting of adaptation, baseline, total sleep deprivation (TSD), and recovery phases. Light was kept consistently dim (≤50 lx), meals were regulated, and activity was restricted. In-the-moment mood was assessed using a modified Hamilton Rating Scale for Depression (HRSD) at screening and each morning following the experimental nights. RESULTS: Day of study had a significant effect on mood in both groups. Post-hoc analyses revealed that significant effects were attributed to mood improvement in the MDD group following study initiation prior to beginning TSD, and in the HC group following recovery sleep, but were not due to mood improvement in the MDD group during TSD. No further improvement in mood occurred during 36 h of TSD. LIMITATIONS: Strict eligibility requirements may limit generalizability. The requirement to be medication free may have biased toward a less severely depressed sample. CONCLUSIONS: Results revealed that individuals with moderate MDD can experience a significant reduction in depressive symptoms upon entering a highly controlled laboratory environment. Environmental effects on mood can be substantial and need to be considered.


Subject(s)
Depressive Disorder, Major , Sleep Deprivation , Humans , Sleep Deprivation/drug therapy , Depressive Disorder, Major/drug therapy , Sleep , Antidepressive Agents/therapeutic use , Affect
9.
Nat Commun ; 14(1): 5172, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620332

ABSTRACT

Many chronic disease symptomatologies involve desynchronized sleep-wake cycles, indicative of disrupted biorhythms. This can be interrogated using body temperature rhythms, which have circadian as well as sleep-wake behavior/environmental evoked components. Here, we investigated the association of wrist temperature amplitudes with a future onset of disease in the UK Biobank one year after actigraphy. Among 425 disease conditions (range n = 200-6728) compared to controls (range n = 62,107-91,134), a total of 73 (17%) disease phenotypes were significantly associated with decreased amplitudes of wrist temperature (Benjamini-Hochberg FDR q < 0.05) and 26 (6.1%) PheCODEs passed a more stringent significance level (Bonferroni-correction α < 0.05). A two-standard deviation (1.8° Celsius) lower wrist temperature amplitude corresponded to hazard ratios of 1.91 (1.58-2.31 95% CI) for NAFLD, 1.69 (1.53-1.88) for type 2 diabetes, 1.25 (1.14-1.37) for renal failure, 1.23 (1.17-1.3) for hypertension, and 1.22 (1.11-1.33) for pneumonia (phenome-wide atlas available at http://bioinf.itmat.upenn.edu/biorhythm_atlas/ ). This work suggests peripheral thermoregulation as a digital biomarker.


Subject(s)
Biological Specimen Banks , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/epidemiology , Temperature , Wrist , Circadian Rhythm , United Kingdom/epidemiology
10.
Biol Psychiatry Glob Open Sci ; 3(3): 470-479, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519467

ABSTRACT

Background: Convergent neuroimaging and neuromodulation studies implicate the right dorsolateral prefrontal cortex (dlPFC) as a key region involved in anxiety-cognition interactions. However, neuroimaging data are correlational, and neuromodulation studies often lack appropriate methodological controls. Accordingly, this work was designed to explore the role of right prefrontal cognitive control mechanisms in the expression/regulation of anxiety using continuous theta-burst transcranial magnetic stimulation (cTBS) and threat of unpredictable shock. Based on prior neuromodulation studies, we hypothesized that the right dlPFC contributed to anxiety expression, and that cTBS should downregulate this expression. Methods: We measured potentiated startle and performance on the Sternberg working memory paradigm in 28 healthy participants before and after 4 sessions (600 pulses/session) of active or sham cTBS. Stimulation was individualized to the right dlPFC site of maximal working memory-related activity and optimized using electric-field modeling. Results: Compared with sham cTBS, active cTBS, which is thought to induce long-term depression-like synaptic changes, increased startle during threat of shock, but the effect was similar for predictable and unpredictable threat. As a measure of target (dis)engagement, we also showed that active but not sham cTBS decreased accuracy on the Sternberg task. Conclusions: Counter to our initial hypothesis, cTBS to the right dlPFC made individuals more anxious, rather than less anxious. Although preliminary, these results are unlikely to be due to transient effects of the stimulation, because anxiety was measured 24 hours after cTBS. In addition, these results are unlikely to be due to off-target effects, because target disengagement was evident from the Sternberg performance data.

11.
Proc Natl Acad Sci U S A ; 120(26): e2214505120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339227

ABSTRACT

Sleep loss robustly disrupts mood and emotion regulation in healthy individuals but can have a transient antidepressant effect in a subset of patients with depression. The neural mechanisms underlying this paradoxical effect remain unclear. Previous studies suggest that the amygdala and dorsal nexus (DN) play key roles in depressive mood regulation. Here, we used functional MRI to examine associations between amygdala- and DN-related resting-state connectivity alterations and mood changes after one night of total sleep deprivation (TSD) in both healthy adults and patients with major depressive disorder using strictly controlled in-laboratory studies. Behavioral data showed that TSD increased negative mood in healthy participants but reduced depressive symptoms in 43% of patients. Imaging data showed that TSD enhanced both amygdala- and DN-related connectivity in healthy participants. Moreover, enhanced amygdala connectivity to the anterior cingulate cortex (ACC) after TSD associated with better mood in healthy participants and antidepressant effects in depressed patients. These findings support the key role of the amygdala-cingulate circuit in mood regulation in both healthy and depressed populations and suggest that rapid antidepressant treatment may target the enhancement of amygdala-ACC connectivity.


Subject(s)
Depressive Disorder, Major , Adult , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Sleep Deprivation/diagnostic imaging , Amygdala/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Magnetic Resonance Imaging/methods
12.
Trends Cogn Sci ; 27(9): 814-832, 2023 09.
Article in English | MEDLINE | ID: mdl-37286432

ABSTRACT

Depression is a common mental disorder characterized by heterogeneous cognitive and behavioral symptoms. The emerging research paradigm of functional connectomics has provided a quantitative theoretical framework and analytic tools for parsing variations in the organization and function of brain networks in depression. In this review, we first discuss recent progress in depression-associated functional connectome variations. We then discuss treatment-specific brain network outcomes in depression and propose a hypothetical model highlighting the advantages and uniqueness of each treatment in relation to the modulation of specific brain network connectivity and symptoms of depression. Finally, we look to the future promise of combining multiple treatment types in clinical practice, using multisite datasets and multimodal neuroimaging approaches, and identifying biological depression subtypes.


Subject(s)
Connectome , Humans , Connectome/methods , Magnetic Resonance Imaging/methods , Depression/therapy , Brain/diagnostic imaging , Neuroimaging
14.
Int J Clin Health Psychol ; 23(4): 100385, 2023.
Article in English | MEDLINE | ID: mdl-37006335

ABSTRACT

Our objective was to review the literature on the parietal cortex and intraparietal sulcus (IPS) in anxiety-related disorders, as well as opportunities for using neuromodulation to target this region and reduce anxiety. We provide an overview of prior research demonstrating: 1) the importance of the IPS in attention, vigilance, and anxious arousal, 2) the potential for neuromodulation of the IPS to reduce unnecessary attention toward threat and anxious arousal as demonstrated in healthy samples; and 3) limited data on the potential for neuromodulation of the IPS to reduce hyper-attention toward threat and anxious arousal among clinical samples with anxiety-related disorders. Future research should evaluate the efficacy of IPS neuromodulation in fully powered clinical trials, as well as the value in augmenting evidence-based treatments for anxiety with IPS neuromodulation.

16.
Res Sq ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824952

ABSTRACT

Many chronic disease symptomatologies involve desynchronized sleep-wake cycles, indicative of disrupted biorhythms. This can be interrogated using body temperature rhythms, which are well-established biomarkers for circadian clock function. Here, we investigated the association of wrist temperature amplitudes with a future onset of disease in the UK Biobank one year after actigraphy. Among 425 disease conditions (range n = 200-6,728) compared to controls (range n = 62,107 - 91,134), a total of 73 (36.5%) disease phenotypes were significantly associated with decreased amplitudes of wrist temperature (Benjamini-Hochberg FDR q < 0.05) and 26 (13%) PheCODEs passed a more stringent significance level (Bonferroni-correction α < 0.05). Here, for example, a two-standard deviation (1.8° Celsius) lower wrist temperature amplitude corresponded to hazard ratios of 1.91 (1.58-2.31 95% CI) for NAFLD, 1.69 (1.53-1.88) for type 2 diabetes, 1.25 (1.14-1.37) for renal failure, 1.23 (1.17-1.3) for hypertension, and 1.22 (1.11-1.33) for pneumonia. A comprehensive phenome-wide atlas of the identified mappings has been made available at http://bioinf.itmat.upenn.edu/biorhythm_atlas/. These findings strongly suggest peripheral thermoregulation as a digital biomarker.

17.
Neuropharmacology ; 224: 109355, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36442650

ABSTRACT

Anxiety disorders are the most common mental health disorder. Therefore, elucidating brain mechanisms implicated in anxiety disorders is important avenue for developing novel treatments and improving care. The dorsolateral prefrontal cortex (dlPFC) is thought to be critically involved in working memory processes (i.e. maintenance, manipulation, suppression, etc.). In addition, there is evidence that this region is involved in anxiety regulation. However, it is unclear how working memory related dlPFC processes contribute to anxiety regulation. Furthermore, we know that laterality plays an important role in working memory related dlPFC processing, however there is no current model of dlPFC mediated anxiety regulation that accounts for potential laterality effects. To address this gap, we propose a potential framework where the dlPFC contributes to emotion regulation via working memory processing. According to this framework, working memory is a fundamental process executed by the dlPFC. However, the domain of content differs across the left and right dlPFC, with the left dlPFC sensitive to primarily verbal content, and the right dlPFC sensitive to primarily non-verbal (affective content). Critically, working memory processes allow for both the retention and suppression of affective information in working memory and the overall net effect of processing on mood will depend on the balance of retention and suppression, the valence of the information being processed (positive vs. negative), and the domain of the information (verbal vs. non-verbal). If accurate, the proposed framework predicts that effects of neuromodulation targeting the dlPFC may be dependent upon the context during which the stimulation is presented. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.


Subject(s)
Dorsolateral Prefrontal Cortex , Prefrontal Cortex , Humans , Prefrontal Cortex/physiology , Memory, Short-Term/physiology , Anxiety , Anxiety Disorders
18.
BMC Med ; 20(1): 477, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482369

ABSTRACT

BACKGROUND: Although electroconvulsive therapy (ECT) is an effective treatment for depression, ECT cognitive impairment remains a major concern. The neurobiological underpinnings and mechanisms underlying ECT antidepressant and cognitive impairment effects remain unknown. This investigation aims to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks and assesses whether they are associated with the ECT-induced electric field (E-field) with an optimal pulse amplitude estimation. METHODS: A single site clinical trial focused on amplitude (600, 700, and 800 mA) included longitudinal multimodal imaging and clinical and cognitive assessments completed before and immediately after the ECT series (n = 54) for late-life depression. Another two independent validation cohorts (n = 84, n = 260) were included. Symptom and cognition were used as references to supervise fMRI and sMRI fusion to identify ECT antidepressant-response and cognitive-impairment multimodal brain networks. Correlations between ECT-induced E-field within these two networks and clinical and cognitive outcomes were calculated. An optimal pulse amplitude was estimated based on E-field within antidepressant-response and cognitive-impairment networks. RESULTS: Decreased function in the superior orbitofrontal cortex and caudate accompanied with increased volume in medial temporal cortex showed covarying functional and structural alterations in both antidepressant-response and cognitive-impairment networks. Volume increases in the hippocampal complex and thalamus were antidepressant-response specific, and functional decreases in the amygdala and hippocampal complex were cognitive-impairment specific, which were validated in two independent datasets. The E-field within these two networks showed an inverse relationship with HDRS reduction and cognitive impairment. The optimal E-filed range as [92.7-113.9] V/m was estimated to maximize antidepressant outcomes without compromising cognitive safety. CONCLUSIONS: The large degree of overlap between antidepressant-response and cognitive-impairment networks challenges parameter development focused on precise E-field dosing with new electrode placements. The determination of the optimal individualized ECT amplitude within the antidepressant and cognitive networks may improve the treatment benefit-risk ratio. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02999269.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/therapy , Neurobiology , Brain/diagnostic imaging , Cognitive Dysfunction/therapy
19.
Biol Psychiatry Glob Open Sci ; 2(4): 489-499, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36324648

ABSTRACT

Background: One aim of characterizing dimensional psychopathology is associating different domains of affective dysfunction with brain circuitry. The functional connectome, as measured by functional magnetic resonance imaging, can be modeled and associated with psychopathology through multiple methods; some methods assess univariate relationships while others summarize broad patterns of activity. It remains unclear whether different dimensions of psychopathology require different representations of the connectome to generate reproducible associations. Methods: Patients experiencing anxious misery symptomology (depression, anxiety, and trauma; n = 192) received resting-state functional magnetic resonance imaging scans. Three modeling approaches (seed-based correlation analysis, edgewise regression, and brain basis set modeling), each relying on increasingly broader representations of the functional connectome, were used to associate connectivity patterns with six data-driven dimensions of psychopathology: anxiety sensitivity, anxious arousal, rumination, anhedonia, insomnia, and negative affect. To protect against overfitting, 50 participants were held out in a testing dataset, leaving 142 participants as training data. Results: Different modeling approaches varied in the extent to which they could model different symptom dimensions: seed-based correlation analysis failed to reproducibly model any symptoms, subsets of the connectome (edgewise regression) were sufficient to model insomnia and anxious arousal, and broad representations of the entire connectome (brain basis set modeling) were necessary to model negative affect and ruminative thought. Conclusions: These results indicate that different methods of representing the functional connectome differ in the degree that they can model different symptom dimensions, highlighting the potential sufficiency of subsets of connections for some dimensions and the necessity of connectome-wide approaches in others.

20.
Sci Adv ; 8(25): eabn5803, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35731882

ABSTRACT

The amygdala processes valenced stimuli, influences emotion, and exhibits aberrant activity across anxiety disorders, depression, and PTSD. Interventions modulating amygdala activity hold promise as transdiagnostic psychiatric treatments. In 45 healthy participants, we investigated whether transcranial magnetic stimulation (TMS) elicits indirect changes in amygdala activity when applied to ventrolateral prefrontal cortex (vlPFC), a region important for emotion regulation. Harnessing in-scanner interleaved TMS/functional MRI (fMRI), we reveal that vlPFC neurostimulation evoked acute and focal modulations of amygdala fMRI BOLD signal. Larger TMS-evoked changes in the amygdala were associated with higher fiber density in a vlPFC-amygdala white matter pathway when stimulating vlPFC but not an anatomical control, suggesting this pathway facilitated stimulation-induced communication between cortex and subcortex. This work provides evidence of amygdala engagement by TMS, highlighting stimulation of vlPFC-amygdala circuits as a candidate treatment for transdiagnostic psychopathology. More broadly, it indicates that targeting cortical-subcortical structural connections may enhance the impact of TMS on subcortical neural activity and, by extension, subcortex-subserved behaviors.


Subject(s)
Prefrontal Cortex , Transcranial Magnetic Stimulation , Amygdala/physiology , Emotions/physiology , Humans , Magnetic Resonance Imaging , Prefrontal Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...