Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Immun ; 74(5): 2637-50, 2006 May.
Article in English | MEDLINE | ID: mdl-16622200

ABSTRACT

Alpha-2,3-sialyltransferase (Lst) is expressed on the outer membrane of Neisseria gonorrhoeae and Neisseria meningitidis and sialylates surface lipooligosaccharide (LOS), facilitating resistance to complement-mediated killing. The enzyme is constitutively expressed from a single gene (lst) and does not undergo antigenic or phase variation. We observed that Triton X-100 extracts of N. gonorrhoeae strain F62 contain about fivefold more sialyltransferase (Stase) activity than extracts of N. meningitidis strain MC58 [symbol: see text]3 a serogroup B acapsulate mutant. We confirmed and expanded upon this observation by showing that extracts of 16 random N. gonorrhoeae isolates contain various amounts of Stase activity, but, on average, 2.2-fold-more Stase activity than extracts of 16 N. meningitidis clinical isolates, representing several serogroups and nongroupable strains. Northern and real-time reverse transcription-PCR analysis of lst transcript levels in N. gonorrhoeae and N. meningitidis revealed that N. gonorrhoeae strains express more lst transcript than N. meningitidis strains. Although transcript levels correlate with average Stase activity observed in the two species, there was not a direct correlation between lst transcript levels and Stase activity among individual isolates of each species. Comparison of lst upstream (5'lst) regions of N. gonorrhoeae and N. meningitidis revealed striking sequence differences characteristic of the two pathogens. N. gonorrhoeae 5'lst regions possess 30-bp and 13-bp elements present as single elements or as tandem repeats that exist only as single elements in the 5'lst regions of N. meningitidis isolates. In addition, the 5'lst regions of N. meningitidis strains have 105-bp transposon-like Correia elements which are absent in N. gonorrhoeae. Chromosomal N. gonorrhoeae 5'lst::lacZ translational fusions expressed 4.75 +/- 0.09-fold (n = 4) higher beta-galactosidase (beta-gal) activity than N. meningitidis 5'lst::lacZ fusions in a host-independent manner, indicating differential expression is governed at least in part by sequence variations in the 5'lst regions. Reporter fusion assays and promoter-mapping analysis revealed that N. gonorrhoeae and N. meningitidis use different promoters with different strengths to transcribe lst. In N. gonorrhoeae, a strong sigma 70 promoter 80 bp upstream of the translational start site is used to transcribe lst, whereas this promoter is inactive in N. meningitidis. In N. meningitidis, a weak sigma 70 promoter at the 3' terminus of a 105-bp Correia repeat-enclosed element 99 bp upstream of the translational start site is used to transcribe lst. We conclude that differential Stase expression between N. gonorrhoeae and N. meningitidis is due at least in part to differential lst gene transcription.


Subject(s)
Neisseria gonorrhoeae/enzymology , Neisseria meningitidis/enzymology , Sialyltransferases/genetics , Transcription, Genetic , Base Sequence , Blotting, Northern , Molecular Sequence Data , Neisseria gonorrhoeae/genetics , Neisseria meningitidis/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic , Repetitive Sequences, Nucleic Acid , beta-Galactoside alpha-2,3-Sialyltransferase
2.
Infect Immun ; 70(7): 3744-51, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12065517

ABSTRACT

Neisseria gonorrhoeae and Neisseria meningitidis express an approximately 43-kDa alpha-2,3-sialyltransferase (Lst) that sialylates the surface lipooligosaccharide (LOS) by using exogenous (in all N. gonorrhoeae strains and some N. meningitidis serogroups) or endogenous (in other N. meningitidis serogroups) sources of 5'-cytidinemonophospho-N-acetylneuraminic acid (CMP-NANA). Sialylation of LOS can protect N. gonorrhoeae and N. meningitidis from complement-mediated serum killing and from phagocytic killing by neutrophils. The precise subcellular location of Lst has not been determined. We confirm and extend previous studies by demonstrating that Lst is located in the outer membrane and is surface exposed in both N. gonorrhoeae and N. meningitidis. Western immunoblot analysis of subcellular fractions of N. gonorrhoeae strain F62 and N. meningitidis strain MC58 not subset 3 (an acapsulate serogroup B strain) performed with rabbit antiserum raised against recombinant Lst revealed an approximately 43-kDa protein exclusively in outer membrane preparations of both pathogens. Inner membrane, periplasmic, cytoplasmic, and culture supernatant fractions were devoid of Lst, as determined by Western blot analysis. Consistent with this finding, outer membrane fractions of N. gonorrhoeae were significantly enriched for sialyltransferase enzymatic activity. A trace of enzymatic activity was detected in inner membrane fractions, which may have represented Lst in transit to the outer membrane or may have represented inner membrane contamination of outer membrane preparations. Subcellular preparations of an isogenic lst insertion knockout mutant of N. gonorrhoeae F62 (strain ST01) expressed neither a 43-kDa immunoreactive protein nor sialyltransferase activity. Anti-Lst rabbit antiserum bound to whole cells of N. meningitidis MC58 not subset 3 and wild-type N. gonorrhoeae F62 but not to the Lst mutant ST01, indicating the surface exposure of the enzyme. Although the anti-Lst antiserum avidly bound enzymatically active, recombinant Lst, it inhibited Lst (sialyltransferase) activity by only about 50% at the highest concentration of antibody used. On the contrary, anti-Lst antiserum did not inhibit sialylation of whole N. gonorrhoeae cells in the presence of exogenous CMP-NANA, suggesting that the antibody did not bind to or could not access the enzyme active site on the surface of viable Neisseria cells. Taken together, these results indicate that Lst is an outer membrane, surface-exposed glycosyltransferase. To our knowledge, this is the first demonstration of the localization of a bacterial glycosyltransferase to the outer membrane of gram-negative bacteria.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Lipopolysaccharides/metabolism , Neisseria gonorrhoeae/enzymology , Neisseria meningitidis/enzymology , Sialyltransferases/metabolism , Animals , Antibodies, Bacterial/biosynthesis , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/immunology , Cell Fractionation , Neisseria gonorrhoeae/genetics , Neisseria meningitidis/genetics , Precipitin Tests , Rabbits , Sialyltransferases/genetics , Sialyltransferases/immunology , Subcellular Fractions , beta-Galactoside alpha-2,3-Sialyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...