Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(20): 14637-14650, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38742831

ABSTRACT

Hydration water dynamics, structure, and thermodynamics are crucially important to understand and predict water-mediated properties at molecular interfaces. Yet experimentally and directly quantifying water behavior locally near interfaces at the sub-nanometer scale is challenging, especially at interfaces submerged in biological solutions. Overhauser dynamic nuclear polarization (ODNP) experiments measure equilibrium hydration water dynamics within 8-15 angstroms of a nitroxide spin probe on instantaneous timescales (10 picoseconds to nanoseconds), making ODNP a powerful tool for probing local water dynamics in the vicinity of the spin probe. As with other spectroscopic techniques, concurrent computational analysis is necessary to gain access to detailed molecular level information about the dynamic, structural, and thermodynamic properties of water from experimental ODNP data. We chose a model system that can systematically tune the dynamics of water, a water-glycerol mixture with compositions ranging from 0 to 0.3 mole fraction glycerol. We demonstrate the ability of molecular dynamics (MD) simulations to compute ODNP spectroscopic quantities, and show that translational, rotational, and hydrogen bonding dynamics of hydration water align strongly with spectroscopic ODNP parameters. Moreover, MD simulations show tight correlations between the dynamic properties of water that ODNP captures and the structural and thermodynamic behavior of water. Hence, experimental ODNP readouts of varying water dynamics suggest changes in local structural and thermodynamic hydration water properties.

2.
J Phys Chem B ; 128(15): 3720-3731, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38584393

ABSTRACT

Cryoprotectants play a crucial role in preserving biological material, ensuring their viability during storage and facilitating crucial applications such as the conservation of medical compounds, tissues, and organs for transplantation. However, the precise mechanism by which cryoprotectants modulate the thermodynamic properties of water to impede the formation and growth of ice crystals, thus preventing long-term damage, remains elusive. This is evident in the use of empirically optimized recipes for mixtures that typically contain DMSO, glycerol, and various sugar constituents. Here, we use terahertz calorimetry, Overhauser nuclear polarization, and molecular dynamics simulations to show that DMSO exhibits a robust structuring effect on water around its methyl groups, reaching a maximum at a DMSO mole fraction of XDMSO = 0.33. In contrast, glycerol exerts a smaller water-structuring effect, even at higher concentrations (Scheme 1). These results potentially suggest that the wrapped water around DMSO's methyl group, which can be evicted upon ligand binding, may render DMSO a more surface-active cryoprotectant than glycerol, while glycerol may participate more as a viscogen that acts on the entire sample. These findings shed light on the molecular intricacies of cryoprotectant solvation behavior and have potentially significant implications for optimizing cryopreservation protocols.

3.
ACS Macro Lett ; 13(4): 423-428, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38529829

ABSTRACT

We report a unique method to construct hierarchical superstructures based on molecular programming of peptidomimetics. Chiral steric hindrance in the polymer backbone stabilizes peptoid helices that crystallize into nanosheets during solvent evaporation. The stacking of nanosheets results in flower-like superstructures. The helical peptoid, nucleated from chiral monomers, is characterized as locally stiffer and more extended than the unstructured peptoid. Molecular dynamics (MD) simulations further suggest a constraint on the dihedral angles and a preference toward the trans configuration, resulting in an extended chain structure. The nanosheet assemblies at various length scales indicate an extent of intermolecular ordering amplified by chiral steric hindrance. Such molecular programming and processing protocols will benefit the future design and controlled assembly of hierarchical peptidomimetics.

4.
J Chem Phys ; 160(12)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38526115

ABSTRACT

Design of next-generation membranes requires a nanoscopic understanding of the effect of biologically inspired heterogeneous surface chemistries and topologies (roughness) on local water and solute behavior. In particular, the rejection of small, neutral solutes, such as boric acid, poses a heretofore unsolved challenge. In prior work, a computational inverse design technique using an evolutionary optimization successfully uncovered new surface design strategies for optimized transport of water over solutes in smooth, model pores consisting of two surface chemistries. However, extending such an approach to more complex (and realistic) scenarios involving many surface chemistries as well as surface roughness is challenging due to the expanded design space. In this work, we develop a new approach that uses active learning to optimize in a reduced feature space of surface group interactions, finding parameters that lead to their assembly into ordered, optimal patterns. This approach rapidly identifies novel surface functionalizations that maximize the difference in water and boric acid transport through the nanopore. Moreover, we find that the roughness of the nanopore wall, independent of its chemistry, can be leveraged to enhance transport selectivity: oscillations in the pore wall diameter optimally inhibit boric acid transport by creating energetic wells from which the solute must escape to transport down the pore. This proof-of-concept demonstrates the potential for active learning strategies, in concert with molecular simulations, to rapidly navigate complex design spaces of aqueous interfaces and is promising as a tool for engineering water-mediated surface interactions for a broad range of applications.

5.
Chem Sci ; 15(7): 2495-2508, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362435

ABSTRACT

The separation and anti-fouling performance of water purification membranes is governed by both macroscopic and molecular-scale water properties near polymer surfaces. However, even for poly(ethylene oxide) (PEO) - ubiquitously used in membrane materials - there is little understanding of whether or how the molecular structure of water near PEO surfaces affects macroscopic water diffusion. Here, we probe both time-averaged bulk and local water dynamics in dilute and concentrated PEO solutions using a unique combination of experimental and simulation tools. Pulsed-Field Gradient NMR and Overhauser Dynamic Nuclear Polarization (ODNP) capture water dynamics across micrometer length scales in sub-seconds to sub-nanometers in tens of picoseconds, respectively. We find that classical models, such as the Stokes-Einstein and Mackie-Meares relations, cannot capture water diffusion across a wide range of PEO concentrations, but that free volume theory can. Our study shows that PEO concentration affects macroscopic water diffusion by enhancing the water structure and altering free volume. ODNP experiments reveal that water diffusivity near PEO is slower than in the bulk in dilute solutions, previously not recognized by macroscopic transport measurements, but the two populations converge above the polymer overlap concentration. Molecular dynamics simulations reveal that the reduction in water diffusivity occurs with enhanced tetrahedral structuring near PEO. Broadly, we find that PEO does not simply behave like a physical obstruction but directly modifies water's structural and dynamic properties. Thus, even in simple PEO solutions, molecular scale structuring and the impact of polymer interfaces is essential to capturing water diffusion, an observation with important implications for water transport through structurally complex membrane materials.

6.
J Chem Phys ; 160(5)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38310476

ABSTRACT

Simulations of soft materials often adopt low-resolution coarse-grained (CG) models. However, the CG representation is not unique and its impact upon simulated properties is poorly understood. In this work, we investigate the space of CG representations for ubiquitin, which is a typical globular protein with 72 amino acids. We employ Monte Carlo methods to ergodically sample this space and to characterize its landscape. By adopting the Gaussian network model as an analytically tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic quality of each CG representation without introducing any approximations in sampling configurations or in modeling interactions. We focus on two metrics, the spectral quality and the information content, that quantify the extent to which the CG representation preserves low-frequency, large-amplitude motions and configurational information, respectively. The spectral quality and information content are weakly correlated among high-resolution representations but become strongly anticorrelated among low-resolution representations. Representations with maximal spectral quality appear consistent with physical intuition, while low-resolution representations with maximal information content do not. Interestingly, quenching studies indicate that the energy landscape of mapping space is very smooth and highly connected. Moreover, our study suggests a critical resolution below which a "phase transition" qualitatively distinguishes good and bad representations.

7.
Langmuir ; 40(1): 761-771, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38118078

ABSTRACT

Excellent antifouling surfaces are generally thought to create a tightly bound layer of water that resists solute adsorption, and highly hydrophilic surfaces such as those with zwitterionic functionalities are of significant current interest as antifoulant strategies. However, despite significant proofs-of-concept, we still lack a fundamental understanding of how the nanoscopic structure of this hydration layer translates to reduced fouling, how surface chemistry can be tuned to achieve antifouling through hydration water, and why, in particular, zwitterionic surfaces seem so promising. Here, we use molecular dynamics simulations and free energy calculations to investigate the molecular relationships among surface chemistry, hydration water structure, and surface-solute affinity across a variety of surface-decorated chemistries. Specifically, we consider polypeptoid-decorated surfaces that display well-known experimental antifouling capabilities and that can be synthesized sequence specifically, with precise backbone positioning of, e.g., charged groups. Through simulations, we calculate the affinities of a range of small solutes to polypeptoid brush surfaces of varied side-chain chemistries. We then demonstrate that measures of the structure of surface hydration water in response to a particular surface chemistry signal solute-surface affinity; specifically, we find that zwitterionic chemistries produce solute-surface repulsion through highly coordinated hydration water while suppressing tetrahedral structuring around the solute, in contrast to uncharged surfaces that show solute-surface affinity. Based on the relationship of this structural perturbation to the affinity of small-molecule solutes, we propose a molecular mechanism by which zwitterionic surface chemistries enhance solute repulsion, with broader implications for the design of antifouling surfaces.

8.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38077065

ABSTRACT

Tau forms toxic fibrillar aggregates in a family of neurodegenerative diseases known as tauopathies. The faithful replication of tauopathy-specific fibril structures is a critical gap for developing diagnostic and therapeutic tools. This study debuts a strategy of identifying a critical segment of tau that forms a folding motif that is characteristic of a family of tauopathies and isolating it as a standalone peptide that form seeding-competent fibrils. The 19-residue jR2R3 peptide (295-313) spanning the R2/R3 splice junction of tau, in the presence of P301L, forms seeding-competent amyloid fibrils. This tau fragment contains the hydrophobic VQIVYK hexapeptide that is part of the core of every pathological tau fibril structure solved to-date and an intramolecular counter-strand that stabilizes the strand-loop-strand (SLS) motif observed in 4R tauopathy fibrils. This study shows that P301L exhibits a duality of effects: it lowers the barrier for the peptide to adopt aggregation-prone conformations and enhances the local structuring of water around the mutation site that facilitates site-specific dewetting and in-register stacking of tau to form cross ß-sheets. We solve a 3 Å cryo-EM structure of jR2R3-P301L fibrils with a pseudo 2 1 screw symmetry in which each half of the fibril's cross-section contains two jR2R3-P301L peptides. One chain adopts a SLS fold found in 4R tauopathies that is stabilized by a second chain wrapping around the SLS fold, reminiscent of the 3-fold and 4-fold structures observed in 4R tauopathies. These jR2R3-P301L fibrils are able to template full length tau in a prion-like fashion. Significance Statement: This study presents a first step towards designing a tauopathy specific aggregation pathway by engineering a minimal tau prion building block, jR2R3, that can template and propagate distinct disease folds. We present the discovery that P301L-among the widest used mutations in cell and animal models of Alzheimer's Disease-destabilizes an aggregation-prohibiting internal hairpin and enhances the local surface water structure that serves as an entropic hotspot to exert a hyper-localized effect in jR2R3. Our study suggests that P301L may be a more suitable mutation to include in modeling 4R tauopathies than for modelling Alzheimer's Disease, and that mutations are powerful tools for the purpose of designing of tau prion models as therapeutic tools.

9.
J Chem Phys ; 159(24)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38149742

ABSTRACT

The critical micelle concentration (CMC) is a crucial parameter in understanding the self-assembly behavior of surfactants. In this study, we combine simulation and experiment to demonstrate the predictive capability of molecularly informed field theories in estimating the CMC of biologically based protein surfactants. Our simulation approach combines the relative entropy coarse-graining of small-scale atomistic simulations with large-scale field-theoretic simulations, allowing us to efficiently compute the free energy of micelle formation necessary for the CMC calculation while preserving chemistry-specific information about the underlying surfactant building blocks. We apply this methodology to a unique intrinsically disordered protein platform capable of a wide variety of tailored sequences that enable tunable micelle self-assembly. The computational predictions of the CMC closely match experimental measurements, demonstrating the potential of molecularly informed field theories as a valuable tool to investigate self-assembly in bio-based macromolecules systematically.


Subject(s)
Intrinsically Disordered Proteins , Micelles , Surface-Active Agents , Computer Simulation
10.
Proc Natl Acad Sci U S A ; 120(48): e2309995120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37983502

ABSTRACT

The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal model for insight into the initial stages of aggregation of larger tau fragments. Even for this small peptide, however, the large length and time scales associated with fibrillization pose challenges for simulation studies of its dynamic assembly, equilibrium configurational landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained model of PHF6 for large-scale simulations of its aggregation, which we use to uncover molecular interactions and thermodynamic driving forces governing its assembly. The model, not trained on any explicit information about fibrillar structure, predicts coexistence of formed fibrils with monomers in solution, and we calculate a putative equilibrium phase diagram in concentration-temperature space. We also characterize the configurational and free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model of heparin that this widely studied cofactor enhances the aggregation propensity of PHF6 by ordering monomers during nucleation and remaining associated with growing fibrils, consistent with experimentally characterized heparin-tau interactions. Overall, this effort provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways and, furthermore, demonstrates the potential of modern multiscale modeling techniques to produce predictive models of amyloidogenic peptides simultaneously capturing sequence-specific effects and emergent aggregate structures.


Subject(s)
Peptides , tau Proteins , tau Proteins/metabolism , Peptides/chemistry , Protein Isoforms , Computer Simulation , Heparin
11.
Eur Phys J E Soft Matter ; 46(9): 75, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37665423

ABSTRACT

The self-assembly and phase separation of mixtures of polyelectrolytes and surfactants are important to a range of applications, from formulating personal care products to drug encapsulation. In contrast to systems of oppositely charged polyelectrolytes, in polyelectrolyte-surfactant systems the surfactants micellize into structures that are highly responsive to solution conditions. In this work, we examine how the morphology of micelles and degree of polyelectrolyte adsorption dynamically change upon varying the mixing ratio of charged and neutral surfactants. Specifically, we consider a solution of the cationic polyelectrolyte polydiallyldimethylammonium, anionic surfactant sodium dodecyl sulfate, neutral ethoxylated surfactants (C[Formula: see text]EO[Formula: see text]), sodium chloride salt, and water. To capture the chemical specificity of these species, we leverage recent developments in constructing molecularly informed field theories via coarse-graining from all-atom simulations. Our results show how changing the surfactant mixing ratios and the identity of the nonionic surfactant modulates micelle size and surface charge, and as a result dictates the degree of polyelectrolyte adsorption. These results are in semi-quantitative agreement with experimental observations on the same system.

12.
Chem Sci ; 14(26): 7381-7392, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37416713

ABSTRACT

Glycerol is a major cryoprotective agent and is widely used to promote protein stabilization. By a combined experimental and theoretical study, we show that global thermodynamic mixing properties of glycerol and water are dictated by local solvation motifs. We identify three hydration water populations, i.e., bulk water, bound water (water hydrogen bonded to the hydrophilic groups of glycerol) and cavity wrap water (water hydrating the hydrophobic moieties). Here, we show that for glycerol experimental observables in the THz regime allow quantification of the abundance of bound water and its partial contribution to the mixing thermodynamics. Specifically, we uncover a 1 : 1 connection between the population of bound waters and the mixing enthalpy, which is further corroborated by the simulation results. Therefore, the changes in global thermodynamic quantity - mixing enthalpy - are rationalized at the molecular level in terms of changes in the local hydrophilic hydration population as a function of glycerol mole fraction in the full miscibility range. This offers opportunities to rationally design polyol water, as well as other aqueous mixtures to optimize technological applications by tuning mixing enthalpy and entropy based on spectroscopic screening.

13.
J Phys Chem B ; 127(20): 4577-4594, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37171393

ABSTRACT

Water's unique thermophysical properties and how it mediates aqueous interactions between solutes have long been interpreted in terms of its collective molecular structure. The seminal work of Errington and Debenedetti [Nature 2001, 409, 318-321] revealed a striking hierarchy of relationships among the thermodynamic, dynamic, and structural properties of water, motivating many efforts to understand (1) what measures of water structure are connected to different experimentally accessible macroscopic responses and (2) how many such structural metrics are adequate to describe the collective structural behavior of water. Diffusivity constitutes a particularly interesting experimentally accessible equilibrium property to investigate such relationships because advanced NMR techniques allow the measurement of bulk and local water dynamics in nanometer proximity to molecules and interfaces, suggesting the enticing possibility of measuring local diffusivities that report on water structure. Here, we apply statistical learning methods to discover persistent structure-dynamic correlations across a variety of simulated aqueous mixtures, from alcohol-water to polypeptoid-water systems. We investigate a variety of molecular water structure metrics and find that an unsupervised statistical learning algorithm (namely, sequential feature selection) identifies only two or three independent structural metrics that are sufficient to predict water self-diffusivity accurately. Surprisingly, the translational diffusivity of water across all mixed systems studied here is strongly correlated with a measure of tetrahedral order given by water's triplet angle distribution. We also identify a separate small number of structural metrics that well predict an important thermodynamic property, the excess chemical potential of an idealized methane-sized hydrophobe in water. Ultimately, we offer a Bayesian method of inferring water structure by using only structure-dynamics linear regression models with experimental Overhauser dynamic nuclear polarization (ODNP) measurements of water self-diffusivity. This study thus quantifies the relationships among several distinct structural order parameters in water and, through statistical learning, reveals the potential to leverage molecular structure to predict fundamental thermophysical properties. In turn, these findings suggest a framework for solving the inverse problem of inferring water's molecular structure using experimental measurements such as ODNP studies that probe local water properties.

14.
J Colloid Interface Sci ; 638: 84-98, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36736121

ABSTRACT

HYPOTHESIS: The computational study of surfactants and self-assembly is challenging because 1) models need to reflect chemistry-specific interactions, and 2) self-assembled structures are difficult to equilibrate with conventional molecular dynamics. We propose to overcome these challenges with a multiscale simulation approach where relative entropy minimization transfers chemically-detailed information from all-atom (AA) simulations to coarse-grained (CG) models that can be simulated using field-theoretic methods. Field-theoretic simulations are not limited by intrinsic physical time scales like diffusion and allow for rigorous equilibration via free energy minimization. This approach should enable the study of properties that are difficult to obtain by particle-based simulations. SIMULATION WORK: We apply this workflow to sodium dodecylsulfate. To ensure chemical fidelity we present an AA force field calibrated against interfacial tension experiments. We generate CG models from AA simulation trajectories and show that particle-based and field-theoretic simulations of the CG model reproduce AA simulations and experimental measurements. FINDINGS: The workflow captures the complex balance of interactions in a multicomponent system ultimately described by an atomistic model. The resulting CG models can study complex 3D phases like double or alternating gyroids, and reproduce salt effects on properties like aggregation number and shape transitions.


Subject(s)
Molecular Dynamics Simulation , Surface-Active Agents , Entropy
15.
Proc Natl Acad Sci U S A ; 120(1): e2206765120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36580589

ABSTRACT

Phosphates and polyphosphates play ubiquitous roles in biology as integral structural components of cell membranes and bone, or as vehicles of energy storage via adenosine triphosphate and phosphocreatine. The solution phase space of phosphate species appears more complex than previously known. We present nuclear magnetic resonance (NMR) and cryogenic transmission electron microscopy (cryo-TEM) experiments that suggest phosphate species including orthophosphates, pyrophosphates, and adenosine phosphates associate into dynamic assemblies in dilute solutions that are spectroscopically "dark." Cryo-TEM provides visual evidence of the formation of spherical assemblies tens of nanometers in size, while NMR indicates that a majority population of phosphates remain as unassociated ions in exchange with spectroscopically invisible assemblies. The formation of these assemblies is reversibly and entropically driven by the partial dehydration of phosphate groups, as verified by diffusion-ordered spectroscopy (DOSY), indicating a thermodynamic state of assembly held together by multivalent interactions between the phosphates. Molecular dynamics simulations further corroborate that orthophosphates readily cluster in aqueous solutions. This study presents the surprising discovery that phosphate-containing molecules, ubiquitously present in the biological milieu, can readily form dynamic assemblies under a wide range of commonly used solution conditions, highlighting a hitherto unreported property of phosphate's native state in biological solutions.


Subject(s)
Phosphates , Polyphosphates , Phosphates/metabolism , Polyphosphates/metabolism , Water/chemistry , Magnetic Resonance Spectroscopy/methods , Microscopy, Electron, Transmission , Adenosine Triphosphate , Solutions
16.
Phys Rev Lett ; 129(9): 099602, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36083658
17.
Biomacromolecules ; 23(4): 1745-1756, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35274944

ABSTRACT

We use molecular dynamics simulations to investigate the effect of polypeptoid sequence on the structure and dynamics of its hydration waters. Polypeptoids provide an excellent platform to study small-molecule hydration in disordered polymers, as they can be precisely synthesized with a variety of sidechain chemistries. We examine water behavior near a set of peptoid oligomers in which the number and placement of nonpolar versus polar sidechains are systematically varied. To do this, we leverage a new computational workflow enabling accurate sampling of polypeptoid conformations. We find that the hydration waters are less dense, are more tetrahedral, and have slower dynamics compared to bulk water. The magnitude of these shifts increases with the number of nonpolar groups. We also find that shifts in the water structure and dynamics are strongly correlated, suggesting that experimental insight into the dynamics of hydration water obtained by Overhauser dynamic nuclear polarization (ODNP) also contains information about water structural properties. We then demonstrate the ability of ODNP to probe site-specific dynamics of hydration water near these model peptoid systems.


Subject(s)
Peptoids , Water , Molecular Dynamics Simulation , Water/chemistry
18.
J Am Chem Soc ; 144(4): 1766-1777, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35041412

ABSTRACT

At aqueous interfaces, the distribution and dynamics of adsorbates are modulated by the behavior of interfacial water. Hydration of a hydrophobic surface can store entropy via the ordering of interfacial water, which contributes to the Gibbs energy of solute binding. However, there is little experimental evidence for the existence of such entropic reservoirs, and virtually no precedent for their rational design in systems involving extended interfaces. In this study, two series of mesoporous silicas were modified in distinct ways: (1) progressively deeper thermal dehydroxylation, via condensation of surface silanols, and (2) increasing incorporation of nonpolar organic linkers into the silica framework. Both approaches result in decreasing average surface polarity, manifested in a blue-shift in the fluorescence of an adsorbed dye. For the inorganic silicas, hydrogen-bonding of water becomes less extensive as the number of surface silanols decreases. Overhauser dynamic nuclear polarization (ODNP) relaxometry indicates enhanced surface water diffusivity, reflecting a loss of enthalpic hydration. In contrast, organosilicas show a monotonic decrease in surface water diffusivity with decreasing polarity, reflecting enhanced hydrophobic hydration. Molecular dynamics simulations predict increased tetrahedrality of interfacial water for the organosilicas, implying increased ordering near the nm-size organic domains (relative to inorganic silicas, which necessarily lack such domains). These findings validate the prediction that hydrophobic hydration at interfaces is controlled by the microscopic length scale of the hydrophobic regions. They further suggest that the hydration thermodynamics of structurally heterogeneous silica surfaces can be tuned to promote adsorption, which in turn tunes the selectivity in catalytic reactions.

19.
ACS Cent Sci ; 8(12): 1609-1617, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36589891

ABSTRACT

Next-generation membranes for purification and reuse of highly contaminated water require materials with precisely tuned functionality to address key challenges, including the removal of small, charge-neutral solutes. Bioinspired multifunctional membrane surfaces enhance transport properties, but the combinatorically large chemical space is difficult to navigate through trial and error. Here, we demonstrate a computational inverse design approach to efficiently identify promising materials and elucidate design rules. We develop a combined evolutionary optimization, machine learning, and molecular simulation workflow to spatially design chemical functional group patterning in a model nanopore that enhances transport of water relative to solutes. The genetic optimization discovers nonintuitive functionalization strategies that hinder the transport of solutes through the pore, simply by patterning hydrophobic methyl and hydrophilic hydroxyl functional groups. Examining these patterns, we demonstrate that they exploit an unexpected diffusive solute hopping mechanism. This inverse design procedure and the identification of novel molecular mechanisms for pore chemical heterogeneity to impact solute selectivity demonstrate new routes to the design of membrane materials with novel functionalities. More broadly, this work illustrates how chemical design is a powerful strategy to modulate water-mediated surface-solute interactions in complex, soft material systems that are relevant to diverse technologies.

20.
J Chem Phys ; 155(9): 094102, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34496595

ABSTRACT

Bottom-up coarse-graining methods provide systematic tools for creating simplified models of molecular systems. However, coarse-grained (CG) models produced with such methods frequently fail to accurately reproduce all thermodynamic properties of the reference atomistic systems they seek to model and, moreover, can fail in even more significant ways when used at thermodynamic state points different from the reference conditions. These related problems of representability and transferability limit the usefulness of CG models, especially those of strongly state-dependent systems. In this work, we present a new strategy for creating temperature-transferable CG models using a single reference system and temperature. The approach is based on two complementary concepts. First, we switch to a microcanonical basis for formulating CG models, focusing on effective entropy functions rather than energy functions. This allows CG models to naturally represent information about underlying atomistic energy fluctuations, which would otherwise be lost. Such information not only reproduces energy distributions of the reference model but also successfully predicts the correct temperature dependence of the CG interactions, enabling temperature transferability. Second, we show that relative entropy minimization provides a direct and systematic approach to parameterize such classes of temperature-transferable CG models. We calibrate the approach initially using idealized model systems and then demonstrate its ability to create temperature-transferable CG models for several complex molecular liquids.

SELECTION OF CITATIONS
SEARCH DETAIL
...