Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 11(11): e15735, 2023 06.
Article in English | MEDLINE | ID: mdl-37287070

ABSTRACT

A monoexponential model characterizing cerebral blood velocity dynamics at the onset of exercise may mask dynamic responses by the cerebrovasculature countering large fluctuations of middle cerebral artery blood velocity (MCAv) and cerebral perfusion pressure (CPP) oscillations. Therefore, the purpose of this study was to determine whether the use of a monoexponential model attributes initial fluctuations of MCAv at the start of exercise as a time delay (TD). Twenty-three adults (10 women, 23.9 ± 3.3 yrs; 23.7 ± 2.4 kg/m2 ) completed 2 min of rest followed by 3 mins of recumbent cycling at 50 W. MCAv, CPP, and Cerebrovascular Conductance index (CVCi), calculated as CVCi = MCAv/MAP × 100 mmHg, were collected, a lowpass filter (0.2 Hz) was applied, and averaged into 3-second bins. MCAv data were then fit to a monoexponential model [ΔMCAv(t) = Amp(1 - e-(t-TD)/τ )]. TD, tau (τ), and mean response time (MRT = TD + τ) were obtained from the model. Subjects exhibited a TD of 20.2 ± 18.1 s. TD was directly correlated with MCAv nadir (MCAvN ), r = -0.560, p = 0.007, which occurred at similar times (16.5 ± 15.3 vs. 20.2 ± 18.1 s, p = 0.967). Regressions indicated CPP as the strongest predictor of MCAvN ( R a 2 $$ {R}_a^2 $$ = 0.36). Fluctuations in MCAv were masked using a monoexponential model. To adequately understand cerebrovascular mechanisms during the transition from rest to exercise, CPP and CVCi must also be analyzed. A concurrent drop in cerebral perfusion pressure and middle cerebral artery blood velocity at the start of exercise forces the cerebrovasculature to respond to maintain cerebral blood flow. The use of a monoexponential model characterizes this initial phase as a time delay and masks this large important response.


Subject(s)
Cerebrovascular Circulation , Exercise , Adult , Humans , Female , Blood Flow Velocity/physiology , Exercise/physiology , Cerebrovascular Circulation/physiology , Middle Cerebral Artery/physiology , Rest , Blood Pressure/physiology
2.
Physiol Rep ; 8(20): e14622, 2020 10.
Article in English | MEDLINE | ID: mdl-33112497

ABSTRACT

Although systemic sex-specific differences in cardiovascular responses to exercise are well established, the comparison of sex-specific cerebrovascular responses to exercise has gone under-investigated especially, during high intensity exercise. Therefore, our purpose was to compare cerebrovascular responses in males and females throughout a graded exercise test (GXT). Twenty-six participants (13 Females and 13 Males, 24 ± 4 yrs.) completed a GXT on a recumbent cycle ergometer consisting of 3-min stages. Each sex completed 50W, 75W, 100W stages. Thereafter, power output increased 30W/stage for females and 40W/stage for males until participants were unable to maintain 60-80 RPM. The final stage completed by the participant was considered maximum workload(Wmax ). Respiratory gases (End-tidal CO2 , EtCO2 ), middle cerebral artery blood velocity (MCAv), heart rate (HR), non-invasive mean arterial pressure (MAP), cardiac output (CO), and stroke volume (SV) were continuously recorded on a breath-by-breath or beat-by-beat basis. Cerebral perfusion pressure, CPP = MAP (0. 7,355 distance from heart-level to doppler probe) and cerebral vascular conductance index, CVCi = MCAv/CPP 100mmHg were calculated. The change from baseline (Δ) in MCAv was similar between the sexes during the GXT (p = .091, ωp2  = 0.05). However, ΔCPP (p < .001, ωp2  = 0.25) was greater in males at intensities ≥ 80% Wmax and ΔCVCi (p = .005, ωp2  = 0.15) was greater in females at 100% Wmax . Δ End-tidal CO2 (ΔEtCO2 ) was not different between the sexes during exercise (p = .606, ωp2  = -0.03). These data suggest there are sex-specific differences in cerebrovascular control, and these differences may only be identifiable at high and severe intensity exercise.


Subject(s)
Cerebrovascular Circulation , Exercise Test/standards , High-Intensity Interval Training/methods , Adult , Blood Pressure , Female , Heart Rate , High-Intensity Interval Training/standards , Humans , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...