Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(18)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759552

ABSTRACT

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Mutation/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy
2.
Front Psychiatry ; 12: 715922, 2021.
Article in English | MEDLINE | ID: mdl-34658954

ABSTRACT

Purpose: Women who carry an FMR1 premutation (PM) can experience two well-established PM-associated disorders: fragile X-associated primary ovarian insufficiency (FXPOI, affects ~20-30% carriers) and fragile X-associated tremor-ataxia syndrome (FXTAS, affects ~6-15% carriers); however, emerging evidence indicates that some of these women experience complex health profiles beyond FXPOI and FXTAS. Methods: In an effort to better understand predictors for these comorbid conditions, we collected self-reported medical histories on 413 women who carry an FMR1 PM. Results: There were 22 health conditions reported by at least 9% of women. In an exploratory analysis, 12 variables were tested in logistic regression models for each comorbid condition, including demographic variables, environmental variables, PM-associated factors, and endorsement of depression and/or anxiety. More than half of the comorbid conditions studied were associated with women who self-reported having anxiety. Age, smoking, body mass index (BMI), and depression were also significant predictor variables for specific comorbid conditions. Conclusions: Age, smoking, and BMI were significantly associated with a subset of the comorbid conditions analyzed. Importantly, depression or anxiety were also significantly associated with many of the comorbid health conditions. This work highlights some of the modifiable factors associated with complex health profiles among women with an FMR1 PM.

3.
Hum Mol Genet ; 30(10): 923-938, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33856019

ABSTRACT

Women heterozygous for an expansion of CGG repeats in the 5'UTR of FMR1 risk developing fragile X-associated primary ovarian insufficiency (FXPOI) and/or tremor and ataxia syndrome (FXTAS). We show that expanded CGGs, independent of FMR1, are sufficient to drive ovarian insufficiency and that expression of CGG-containing mRNAs alone or in conjunction with a polyglycine-containing peptide translated from these RNAs contribute to dysfunction. Heterozygous females from two mouse lines expressing either CGG RNA-only (RNA-only) or CGG RNA and the polyglycine product FMRpolyG (FMRpolyG+RNA) were used to assess ovarian function in aging animals. The expression of FMRpolyG+RNA led to early cessation of breeding, ovulation and transcriptomic changes affecting cholesterol and steroid hormone biosynthesis. Females expressing CGG RNA-only did not exhibit decreased progeny during natural breeding, but their ovarian transcriptomes were enriched for alterations in cholesterol and lipid biosynthesis. The enrichment of CGG RNA-only ovaries for differentially expressed genes related to cholesterol processing provided a link to the ovarian cysts observed in both CGG-expressing lines. Early changes in transcriptome profiles led us to measure ovarian function in prepubertal females that revealed deficiencies in ovulatory responses to gonadotropins. These include impairments in cumulus expansion and resumption of oocyte meiosis, as well as reduced ovulated oocyte number. Cumulatively, we demonstrated the sufficiency of ectopically expressed CGG repeats to lead to ovarian insufficiency and that co-expression of CGG-RNA and FMRpolyG lead to premature cessation of breeding. However, the expression of CGG RNA-alone was sufficient to lead to ovarian dysfunction by impairing responses to hormonal stimulation.


Subject(s)
Ataxia/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Primary Ovarian Insufficiency/genetics , Transcriptome/genetics , Tremor/genetics , Animals , Ataxia/pathology , Disease Models, Animal , Ectopic Gene Expression/genetics , Female , Fragile X Syndrome/pathology , Gonadotropins/metabolism , Humans , Mice , Oocytes/growth & development , Peptides/genetics , Primary Ovarian Insufficiency/pathology , Tremor/pathology , Trinucleotide Repeat Expansion/genetics
4.
Genet Med ; 23(9): 1648-1655, 2021 09.
Article in English | MEDLINE | ID: mdl-33927378

ABSTRACT

PURPOSE: Approximately 20-30% of women with an FMR1 premutation experience fragile X-associated primary ovarian insufficiency (FXPOI); however, current risk estimates based on repeat size only identify women with the midrange of repeats to be at the highest risk. METHODS: To better understand the risk by repeat size, we collected self-reported reproductive histories on 1,668 women and divided them into high-resolution repeat size bins of ~5 CGG repeats to determine a more accurate risk for FXPOI in relation to CGG repeat length. RESULTS: As previously reported, women with 70-100 CGG repeats were at the highest risk for FXPOI using various statistical models to compare average age at menopause and risk of FXPOI, with women with 85-89 repeats being at the highest risk. Importantly, women with <65 repeats or >120 repeats did not have a significantly increased risk for FXPOI compared to women with <45 repeats. CONCLUSION: Using a large cross-section study on 1,668 women, we have provided more personalized risk assessment for FXPOI using high-resolution repeat size bins. Understanding the variability in risk has important implications for family planning and overall health among women with a premutation.


Subject(s)
Fragile X Syndrome , Menopause, Premature , Primary Ovarian Insufficiency , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Humans , Primary Ovarian Insufficiency/genetics
5.
Reprod Sci ; 28(7): 1850-1865, 2021 07.
Article in English | MEDLINE | ID: mdl-33090377

ABSTRACT

Nlrp2 encodes a protein of the oocyte subcortical maternal complex (SCMC), required for embryo development. We previously showed that loss of maternal Nlrp2 in mice causes subfertility, smaller litters with birth defects, and growth abnormalities in offspring, indicating that Nlrp2 is a maternal effect gene and that all embryos from Nlrp2-deficient females that were cultured in vitro arrested before the blastocysts stage. Here, we used time-lapse microscopy to examine the development of cultured embryos from superovulated Nlrp2-deficient and wild-type mice after in vivo and in vitro fertilization. Embryos from Nlrp2-deficient females had similar abnormal cleavage and fragmentation and arrested by blastocyst stage, irrespective of fertilization mode. This indicates that in vitro fertilization does not further perturb or improve the development of cultured embryos. We also transferred embryos from superovulated Nlrp2-deficient and wild-type females to wild-type recipients to investigate if the abnormal reproductive outcomes of Nlrp2-deficient females are primarily driven by oocyte dysfunction or if a suboptimal intra-uterine milieu is a necessary factor. Pregnancies with transferred embryos from Nlrp2-deficient females produced smaller litters, stillbirths, and offspring with birth defects and growth abnormalities. This indicates that the reproductive phenotype is oocyte-specific and is not rescued by development in a wild-type uterus. We further found abnormal DNA methylation at two maternally imprinted loci in the kidney of surviving young adult offspring, confirming persistent DNA methylation disturbances in surviving offspring. These findings have implications for fertility treatments for women with mutations in NLRP2 and other genes encoding SCMC proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , Embryonic Development/physiology , Fertilization in Vitro , Oocytes/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Apoptosis Regulatory Proteins/metabolism , Blastocyst/metabolism , DNA Fragmentation , DNA Methylation , Embryo Culture Techniques , Embryo Transfer , Female , Mice , Pregnancy , Pregnancy Outcome , Superovulation
6.
Endocrinology ; 160(6): 1377-1393, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30951142

ABSTRACT

Ovarian theca androgen production is regulated by the pituitary LH and intrafollicular factors. Enhanced androgen biosynthesis by theca cells contributes to polycystic ovary syndrome (PCOS) in women, but the ovarian consequences of elevated androgens are not completely understood. Our study documents the molecular events that are altered in the theca and stromal cells of mice exposed to high androgen levels, using the nonaromatizable androgen DHT. Changes in ovarian morphology and function were observed not only in follicles, but also in the stromal compartment. Genome-wide microarray analyses revealed marked changes in the ovarian transcriptome of DHT-treated females within 1 week. Particularly striking was the increased expression of vascular cell adhesion molecule 1 (Vcam1) specifically in the NR2F2/COUPTF-II lineage theca cells, not granulosa cells, of growing follicles and throughout the stroma of the androgen-treated mice. This response was mediated by androgen receptors (ARs) present in theca and stromal cells. Human theca-derived cultures expressed both ARs and NR2F2 that were nuclear. VCAM1 mRNA and protein were higher in PCOS-derived theca cells compared with control theca and reduced markedly by the AR antagonist flutamide. In the DHT-treated mice, VCAM1 was transiently induced by equine chorionic gonadotropin, when androgen and estrogen biosynthesis peak in preovulatory follicles, and was potently suppressed by a superovulatory dose of human chorionic gonadotropin. High levels of VCAM1 in the theca and interstitial cells of DHT-treated mice and in adult Leydig cells indicate that there may be novel functions for VCAM1 in reproductive tissues, including the gonads.


Subject(s)
Dihydrotestosterone , Hyperandrogenism/metabolism , Ovarian Follicle/metabolism , Ovary/metabolism , Stromal Cells/metabolism , Theca Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Animals , COUP Transcription Factor II/metabolism , Female , Hyperandrogenism/chemically induced , Mice , Receptors, Androgen/metabolism
7.
PLoS One ; 9(1): e85600, 2014.
Article in English | MEDLINE | ID: mdl-24454898

ABSTRACT

Cardiovascular malformations and cardiomyopathy are among the most common phenotypes caused by deletions of chromosome 1p36 which affect approximately 1 in 5000 newborns. Although these cardiac-related abnormalities are a significant source of morbidity and mortality associated with 1p36 deletions, most of the individual genes that contribute to these conditions have yet to be identified. In this paper, we use a combination of clinical and molecular cytogenetic data to define five critical regions for cardiovascular malformations and two critical regions for cardiomyopathy on chromosome 1p36. Positional candidate genes which may contribute to the development of cardiovascular malformations associated with 1p36 deletions include DVL1, SKI, RERE, PDPN, SPEN, CLCNKA, ECE1, HSPG2, LUZP1, and WASF2. Similarly, haploinsufficiency of PRDM16-a gene which was recently shown to be sufficient to cause the left ventricular noncompaction-SKI, PRKCZ, RERE, UBE4B and MASP2 may contribute to the development of cardiomyopathy. When treating individuals with 1p36 deletions, or providing prognostic information to their families, physicians should take into account that 1p36 deletions which overlie these cardiac critical regions may portend to cardiovascular complications. Since several of these cardiac critical regions contain more than one positional candidate gene-and large terminal and interstitial 1p36 deletions often overlap more than one cardiac critical region-it is likely that haploinsufficiency of two or more genes contributes to the cardiac phenotypes associated with many 1p36 deletions.


Subject(s)
Cardiovascular Abnormalities/genetics , Cardiovascular Diseases/genetics , Chromosomes, Human, Pair 1 , Gene Deletion , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...