Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 2443, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30792442

ABSTRACT

Antibody-drug conjugates (ADCs) are promising therapies for haematological cancers. Historically, their therapeutic benefit is due to ADC targeting of lineage-restricted antigens. The C-X-C motif chemokine receptor 4 (CXCR4) is attractive for targeted therapy of haematological cancers, given its expression in multiple tumour types and role in cancer "homing" to bone marrow. However, CXCR4 is also expressed in haematopoietic cells and other normal tissues, raising safety challenges to the development of anti-CXCR4 ADCs for cancer treatment. Here, we designed the first anti-CXCR4 ADC with favourable therapeutic index, effective in xenografts of haematopoietic cancers resistant to standard of care and anti-CXCR4 antibodies. We screened multiple ADC configurations, by varying type of linker-payload, drug-to-antibody ratio (DAR), affinity and Fc format. The optimal ADC bears a non-cleavable linker, auristatin as payload at DAR = 4 and a low affinity antibody with effector-reduced Fc. Contrary to other drugs targeting CXCR4, anti-CXCR4 ADCs effectively eliminated cancer cells as monotherapy, while minimizing leucocytosis. The optimal ADC selectively eliminated CXCR4+ cancer cells in solid tumours, but showed limited toxicity to normal CXCR4+ tissues, sparing haematopoietic stem cells and progenitors. Our work provides proof-of-concept that through empirical ADC design, it is possible to target proteins with broad normal tissue expression.


Subject(s)
Antineoplastic Agents, Immunological , Drug Design , Immunoconjugates , Receptors, CXCR4/immunology , Animals , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/chemical synthesis , Antineoplastic Agents, Immunological/chemistry , CHO Cells , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cells, Cultured , Cricetinae , Cricetulus , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Deoxycytidine/analogs & derivatives , Female , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/chemistry , Immunoglobulin Fab Fragments/administration & dosage , Immunoglobulin Fab Fragments/adverse effects , Immunoglobulin Fab Fragments/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, SCID , Mice, Transgenic , Models, Molecular , Protein Structure, Tertiary , Receptors, CXCR4/antagonists & inhibitors , Treatment Outcome , Xenograft Model Antitumor Assays , Gemcitabine
2.
Oncotarget ; 9(71): 33446-33458, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30323890

ABSTRACT

Epidermal growth factor receptor (EGFR) is a clinically validated target and often overexpressed in some solid tumors. Both EGFR tyrosine kinase inhibitors and ligand-blocking antibodies have been approved for treatment of NSCLC, head and neck cancers and colorectal cancers. However, clinical response is limited and often accompanied by significant toxicities due to normal tissue expression. To improve the effectiveness of targeting EGFR while minimizing the toxicities on normal tissues, we developed a low-affinity anti-EGFR antibody drug conjugate (ADC), RN765C. Potent in vitro cytotoxicity of RN765C, with nanomolar to subnanomolar EC50, was observed on a panel of cancer cell lines expressing moderate to high level of EGFR. In contrast, RN765C was less effective in killing normal human keratinocytes, presumably due to its lower receptor expression. Mechanistically, RN765C has multiple modes of action: inducing payload mediated mitotic arrest and cell death, blocking EGFR pathway signal and mediating antibody dependent cell cytotoxicity. In preclinical studies, a single dose of RN765C at 1.5-3 mg/kg was generally sufficient to induce tumor regression in multiple cell line and patient-derived xenograft models, including those that are resistant to EGFR-directed tyrosine kinase inhibitors. Our data support further investigation of RN765C in the clinic to treat EGFR expressing solid tumors.

3.
Pain Rep ; 3(3): e653, 2018 May.
Article in English | MEDLINE | ID: mdl-29922745

ABSTRACT

INTRODUCTION: The neurotrophin nerve growth factor has a demonstrated role in pain transduction and pathophysiology. OBJECTIVES: Two randomized, double-blind, placebo-controlled, phase 1 studies were conducted to evaluate safety, tolerability, and analgesic efficacy of single doses of tanezumab, a humanized anti-nerve growth factor monoclonal antibody, in chronic or acute pain. METHODS: In the first study (CL001), patients with moderate to severe pain from osteoarthritis (OA) of the knee received a single intravenous infusion of tanezumab (3-1000 µg/kg) or placebo in a dose-escalation (part 1; N = 42) or parallel-arm (part 2; N = 79) study design. The second study (CL002) was a placebo-controlled dose-escalation (tanezumab 10-1000 µg/kg; N = 50) study in patients undergoing bunionectomy surgery. RESULTS: Adverse event rates were generally similar across treatments. Most adverse events were generally mild to moderate in severity and no patients discontinued as a result of adverse events. Adverse events of abnormal peripheral sensation were more common with higher doses of tanezumab (≥100 µg/kg) than with placebo. These were generally mild to moderate in severity. Tanezumab provided up to 12 weeks of effective analgesia for OA knee pain, with statistically significant improvements at doses ≥100 µg/kg (P < 0.05). By contrast, no trend for analgesic activity was found when tanezumab was administered 8 to 16 hours before bunionectomy. CONCLUSIONS: The demonstration of a favorable safety profile and clinical efficacy in OA pain supports clinical development of tanezumab as a potential treatment for chronic pain conditions.

4.
Toxicol Pathol ; 46(4): 408-420, 2018 06.
Article in English | MEDLINE | ID: mdl-29768985

ABSTRACT

Tanezumab, an anti-nerve growth factor (NGF) antibody, is in development for management of chronic pain. During clinical trials of anti-NGF antibodies, some patients reported unexpected adverse events requiring total joint replacements, resulting in a partial clinical hold on all NGF inhibitors. Three nonclinical toxicology studies were conducted to evaluate the effects of tanezumab or the murine precursor muMab911 on selected bone and joint endpoints and biomarkers in cynomolgus monkeys, Sprague-Dawley rats, and C57BL/6 mice. Joint and bone endpoints included histology, immunohistochemistry, microcomputed tomography (mCT) imaging, and serum biomarkers of bone physiology. Responses of bone endpoints to tanezumab were evaluated in monkeys at 4 to 30 mg/kg/week for 26 weeks and in rats at 0.2 to 10 mg/kg twice weekly for 28 days. The effects of muMab911 at 10 mg/kg/week for 12 weeks on selected bone endpoints were determined in mice. Tanezumab and muMab911 had no adverse effects on any bone or joint parameter. There were no test article-related effects on bone or joint histology, immunohistochemistry, or structure. Reversible, higher osteocalcin concentrations occurred only in the rat study. No deleterious effects were observed in joints or bones in monkeys, rats, or mice administered high doses of tanezumab or muMab911.


Subject(s)
Antibodies, Monoclonal, Humanized/toxicity , Bone and Bones/drug effects , Joints/drug effects , Nerve Growth Factor/antagonists & inhibitors , Animals , Antibodies, Monoclonal/toxicity , Macaca fascicularis , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Tomography, X-Ray Computed
5.
Cardiovasc Ther ; 36(1)2018 Feb.
Article in English | MEDLINE | ID: mdl-29078037

ABSTRACT

AIMS: Three single-dose and one multiple-dose phase I studies were conducted in subjects with primary hypercholesterolemia to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of bococizumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor. METHODS: The dosing schedules for hypercholesterolemic subjects randomized in the four phase I studies were (1) ascending, single, intravenous (IV) bococizumab (0.3, 1, 3, 6, 12, or 18 mg/kg), or placebo (N = 48; baseline low-density lipoprotein cholesterol [LDL-C] ≥130 mg/dL); (2) single, IV bococizumab (0.5 or 4 mg/kg; no placebo) added to ongoing atorvastatin 40 mg/day (N = 24); (3) single, fixed, subcutaneous (SC) bococizumab (100 or 200 mg), or IV bococizumab (200 mg; no placebo; N = 49; baseline LDL-C ≥130 mg/dL); and (4) weekly IV bococizumab (0.25, 0.5, 1, or 1.5 mg/kg) or placebo for 4 weeks (N = 67; baseline LDL-C ≥130 mg/dL). RESULTS: Bococizumab pharmacokinetics were well characterized following single IV or SC doses and following multiple IV doses. Exposure to single-dose bococizumab increased slightly greater than dose-proportionally and clearance decreased with increasing dose. In the single-dose studies, maximal mean percent reductions from baseline in LDL-C ranged from 43% (0.3 mg/kg) to 84% (18 mg/kg) in bococizumab-treated subjects, compared with 2% for placebo. For the multiple-dose study, maximal reductions in LDL-C ranged from 55% (0.25 mg/kg) to 66% (1 mg/kg) in bococizumab-treated subjects, compared with 9% for placebo. In all studies, adverse events were infrequent, transient, and not dose-related. CONCLUSIONS: Bococizumab was generally safe and well tolerated. Bococizumab lowered LDL-C levels substantially in all four studies.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Anticholesteremic Agents/administration & dosage , Atorvastatin/administration & dosage , Cholesterol, LDL/blood , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hypercholesterolemia/drug therapy , PCSK9 Inhibitors , Serine Proteinase Inhibitors/administration & dosage , Administration, Intravenous , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Anticholesteremic Agents/adverse effects , Anticholesteremic Agents/pharmacokinetics , Atorvastatin/adverse effects , Biomarkers/blood , Down-Regulation , Drug Administration Schedule , Drug Therapy, Combination , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hypercholesterolemia/blood , Hypercholesterolemia/enzymology , Hypercholesterolemia/genetics , Male , Middle Aged , Proprotein Convertase 9/metabolism , Serine Proteinase Inhibitors/adverse effects , Serine Proteinase Inhibitors/pharmacokinetics , Time Factors , Treatment Outcome
6.
Ann Rheum Dis ; 76(1): 295-302, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27381034

ABSTRACT

OBJECTIVE: To investigate whether the effects of nerve growth factor (NGF) inhibition with tanezumab on rats with medial meniscal tear (MMT) effectively model rapidly progressive osteoarthritis (RPOA) observed in clinical trials. METHODS: Male Lewis rats underwent MMT surgery and were treated weekly with tanezumab (0.1, 1 or 10 mg/kg), isotype control or vehicle for 7, 14 or 28 days. Gait deficiency was measured to assess weight-bearing on the operated limb. Joint damage was assessed via histopathology. A second arm, delayed onset of treatment (starting 3-8 weeks after MMT surgery) was used to control for analgesia early in the disease process. A third arm, mid-tibial amputation, evaluated the dependency of the model on weight-bearing. RESULTS: Gait deficiency in untreated rats was present 3-7 days after MMT surgery, with a return to normal weight-bearing by days 14-28. Prophylactic treatment with tanezumab prevented gait deficiency and resulted in more severe cartilage damage. When onset of treatment with tanezumab was delayed to 3-8 weeks after MMT surgery, there was no increase in cartilage damage. Mid-tibial amputation completely prevented cartilage damage in untreated MMT rats. CONCLUSIONS: These data suggest that analgesia due to NGF inhibition during the acute injury phase is responsible for increased voluntary weight-bearing and subsequent cartilage damage in the rat MMT model. This model failed to replicate the hypotrophic bone response observed in tanezumab-treated patients with RPOA.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Cartilage, Articular/injuries , Nerve Growth Factor/antagonists & inhibitors , Tibial Meniscus Injuries/drug therapy , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/toxicity , Arthritis, Experimental/chemically induced , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/physiopathology , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Evaluation, Preclinical/methods , Gait , Male , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/pathology , Radiography , Rats, Inbred Lew , Tibial Meniscus Injuries/diagnostic imaging , Tibial Meniscus Injuries/pathology , Tibial Meniscus Injuries/physiopathology , Weight-Bearing , X-Ray Microtomography
7.
J Biol Chem ; 291(27): 13974-13986, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27129258

ABSTRACT

The prominent role of voltage-gated sodium channel 1.7 (Nav1.7) in nociception was revealed by remarkable human clinical and genetic evidence. Development of potent and subtype-selective inhibitors of this ion channel is crucial for obtaining therapeutically useful analgesic compounds. Microproteins isolated from animal venoms have been identified as promising therapeutic leads for ion channels, because they naturally evolved to be potent ion channel blockers. Here, we report the engineering of highly potent and selective inhibitors of the Nav1.7 channel based on tarantula ceratotoxin-1 (CcoTx1). We utilized a combination of directed evolution, saturation mutagenesis, chemical modification, and rational drug design to obtain higher potency and selectivity to the Nav1.7 channel. The resulting microproteins are highly potent (IC50 to Nav1.7 of 2.5 nm) and selective. We achieved 80- and 20-fold selectivity over the closely related Nav1.2 and Nav1.6 channels, respectively, and the IC50 on skeletal (Nav1.4) and cardiac (Nav1.5) sodium channels is above 3000 nm The lead molecules have the potential for future clinical development as novel therapeutics in the treatment of pain.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel/chemistry , Pain Management/methods , Protein Engineering , Voltage-Gated Sodium Channel Blockers/pharmacology , HEK293 Cells , Humans , NAV1.7 Voltage-Gated Sodium Channel/drug effects , Patch-Clamp Techniques , Phylogeny , Spider Venoms/chemistry
8.
Mol Cancer Ther ; 15(5): 958-70, 2016 05.
Article in English | MEDLINE | ID: mdl-26944918

ABSTRACT

The degree of stability of antibody-drug linkers in systemic circulation, and the rate of their intracellular processing within target cancer cells are among the key factors determining the efficacy of antibody-drug conjugates (ADC) in vivo Previous studies demonstrated the susceptibility of cleavable linkers, as well as auristatin-based payloads, to enzymatic cleavage in rodent plasma. Here, we identify Carboxylesterase 1C as the enzyme responsible for the extracellular hydrolysis of valine-citrulline-p-aminocarbamate (VC-PABC)-based linkers in mouse plasma. We further show that the activity of Carboxylesterase 1C towards VC-PABC-based linkers, and consequently the stability of ADCs in mouse plasma, can be effectively modulated by small chemical modifications to the linker. While the introduced modifications can protect the VC-PABC-based linkers from extracellular cleavage, they do not significantly alter the intracellular linker processing by the lysosomal protease Cathepsin B. The distinct substrate preference of the serum Carboxylesterase 1C offers the opportunity to modulate the extracellular stability of cleavable ADCs without diminishing the intracellular payload release required for ADC efficacy. Mol Cancer Ther; 15(5); 958-70. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Carbamates/chemistry , Citrulline/chemistry , Immunoconjugates/chemistry , Valine/chemistry , Animals , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Biomarkers , Carboxylesterase/chemistry , Carboxylesterase/metabolism , Drug Design , Drug Stability , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice , Mice, Knockout , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Structure-Activity Relationship
9.
PLoS One ; 10(7): e0132282, 2015.
Article in English | MEDLINE | ID: mdl-26161543

ABSTRACT

The efficacy of an antibody-drug conjugate (ADC) is dependent on the properties of its linker-payload which must remain stable while in systemic circulation but undergo efficient processing upon internalization into target cells. Here, we examine the stability of a non-cleavable Amino-PEG6-based linker bearing the monomethyl auristatin D (MMAD) payload site-specifically conjugated at multiple positions on an antibody. Enzymatic conjugation with transglutaminase allows us to create a stable amide linkage that remains intact across all tested conjugation sites on the antibody, and provides us with an opportunity to examine the stability of the auristatin payload itself. We report a position-dependent degradation of the C terminus of MMAD in rodent plasma that has a detrimental effect on its potency. The MMAD cleavage can be eliminated by either modifying the C terminus of the toxin, or by selection of conjugation site. Both approaches result in improved stability and potency in vitro and in vivo. Furthermore, we show that the MMAD metabolism in mouse plasma is likely mediated by a serine-based hydrolase, appears much less pronounced in rat, and was not detected in cynomolgus monkey or human plasma. Clarifying these species differences and controlling toxin degradation to optimize ADC stability in rodents is essential to make the best ADC selection from preclinical models. The data presented here demonstrate that site selection and toxin susceptibility to mouse plasma degradation are important considerations in the design of non-cleavable ADCs, and further highlight the benefits of site-specific conjugation methods.


Subject(s)
Aminobenzoates/pharmacokinetics , Drug Carriers/pharmacokinetics , Oligopeptides/pharmacokinetics , Aminobenzoates/administration & dosage , Aminobenzoates/chemistry , Animals , Antibodies/administration & dosage , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Stability , Female , HEK293 Cells , Humans , Macaca fascicularis , Mice, SCID , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Rats
11.
PLoS One ; 10(4): e0125127, 2015.
Article in English | MEDLINE | ID: mdl-25905719

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a soluble protein that directs membrane-bound receptors to lysosomes for degradation. In the most studied example of this, PCSK9 binding leads to the degradation of low density lipoprotein receptor (LDLR), significantly affecting circulating LDL-C levels. The mechanism mediating this degradation, however, is not completely understood. We show here that LDLR facilitates PCSK9 interactions with amyloid precursor like protein 2 (APLP2) at neutral pH leading to PCSK9 internalization, although direct binding between PCSK9 and LDLR is not required. Moreover, binding to APLP2 or LDLR is independently sufficient for PCSK9 endocytosis in hepatocytes, while LDL can compete with APLP2 for PCSK9 binding to indirectly mediate PCSK9 endocytosis. Finally, we show that APLP2 and LDLR are also required for the degradation of another PCSK9 target, APOER2, necessitating a general role for LDLR and APLP2 in PCSK9 function. Together, these findings provide evidence that PCSK9 has at least two endocytic epitopes that are utilized by a variety of internalization mechanisms and clarifies how PCSK9 may direct proteins to lysosomes.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , LDL-Receptor Related Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proprotein Convertases/chemistry , Proprotein Convertases/metabolism , Receptors, LDL/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Animals , Endocytosis , Epitopes/metabolism , Hep G2 Cells , Hepatocytes/metabolism , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Male , Mice , Proprotein Convertase 9 , Protein Binding
12.
Bioconjug Chem ; 26(4): 650-9, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25643134

ABSTRACT

The systemic stability of the antibody-drug linker is crucial for delivery of an intact antibody-drug conjugate (ADC) to target-expressing tumors. Linkers stable in circulation but readily processed in the target cell are necessary for both safety and potency of the delivered conjugate. Here, we report a range of stabilities for an auristatin-based payload site-specifically attached through a cleavable valine-citrulline-p-aminobenzylcarbamate (VC-PABC) linker across various sites on an antibody. We demonstrate that the conjugation site plays an important role in determining VC-PABC linker stability in mouse plasma, and that the stability of the linker positively correlates with ADC cytotoxic potency both in vitro and in vivo. Furthermore, we show that the VC-PABC cleavage in mouse plasma is not mediated by Cathepsin B, the protease thought to be primarily responsible for linker processing in the lysosomal degradation pathway. Although the VC-PABC cleavage is not detected in primate plasma in vitro, linker stabilization in the mouse is an essential prerequisite for designing successful efficacy and safety studies in rodents during preclinical stages of ADC programs. The divergence of linker metabolism in mouse plasma and its intracellular cleavage offers an opportunity for linker optimization in the circulation without compromising its efficient payload release in the target cell.


Subject(s)
Aminobenzoates/chemistry , Antibodies, Monoclonal/chemistry , Antineoplastic Agents/chemistry , Immunoconjugates/chemistry , Oligopeptides/chemistry , Pancreatic Neoplasms/drug therapy , Aminobenzoates/blood , Aminobenzoates/pharmacokinetics , Aminobenzoates/pharmacology , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Carbamates/chemistry , Cathepsin B/chemistry , Cathepsin B/metabolism , Cell Line, Tumor , Dipeptides/chemistry , Drug Delivery Systems/methods , Drug Stability , Female , Humans , Immunoconjugates/blood , Immunoconjugates/pharmacokinetics , Immunoconjugates/pharmacology , Mice , Mice, Nude , Models, Molecular , Oligopeptides/blood , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
13.
J Mol Biol ; 427(6 Pt B): 1513-1534, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25284753

ABSTRACT

The ability of antibodies to bind an antigen with a high degree of affinity and specificity has led them to become the largest and fastest growing class of therapeutic proteins. Clearly identifying the epitope at which they bind their cognate antigen provides insight into their mechanism of action and helps differentiate antibodies that bind the same antigen. Here, we describe a method to precisely and efficiently map the epitopes of a panel of antibodies in parallel over the course of several weeks. This method relies on the combination of rational library design, quantitative yeast surface display and next-generation DNA sequencing and was demonstrated by mapping the epitopes of several antibodies that neutralize alpha toxin from Staphylococcus aureus. The accuracy of this method was confirmed by comparing the results to the co-crystal structure of one antibody and alpha toxin and was further refined by the inclusion of a lower-affinity variant of the antibody. In addition, this method produced quantitative insight into the epitope residues most critical for the antibody-antigen interaction and enabled the relative affinities of each antibody toward alpha toxin variants to be estimated. This affinity estimate serves as a predictor of neutralizing antibody potency and was used to anticipate the ability of each antibody to effectively bind and neutralize naturally occurring alpha toxin variants secreted by strains of S. aureus, including clinically relevant strains. Ultimately this type information can be used to help select the best clinical candidate among a set of antibodies against a given antigen.


Subject(s)
Antibodies, Monoclonal/immunology , Bacterial Toxins/immunology , Epitopes/analysis , Hemolysin Proteins/immunology , High-Throughput Nucleotide Sequencing , Peptide Library , Saccharomyces cerevisiae/immunology , Staphylococcal Infections/prevention & control , Amino Acid Sequence , Antibodies, Monoclonal/genetics , Bacterial Toxins/genetics , Epitope Mapping/methods , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Flow Cytometry , Hemolysin Proteins/genetics , Humans , Molecular Sequence Data , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Staphylococcal Infections/immunology , Staphylococcus aureus/genetics , Staphylococcus aureus/immunology
14.
MAbs ; 6(4): 1059-68, 2014.
Article in English | MEDLINE | ID: mdl-24830649

ABSTRACT

Nerve growth factor (NGF) is indispensable during normal embryonic development and critical for the amplification of pain signals in adults. Intervention in NGF signaling holds promise for the alleviation of pain resulting from human diseases such as osteoarthritis, cancer and chronic lower back disorders. We developed a fast, high-fidelity method to convert a hybridoma-derived NGF-targeted mouse antibody into a clinical candidate. This method, termed Library Scanning Mutagenesis (LSM), resulted in the ultra-high affinity antibody tanezumab, a first-in-class anti-hyperalgesic specific for an NGF epitope. Functional and structural comparisons between tanezumab and the mouse 911 precursor antibody using neurotrophin-specific cell survival assays and X-ray crystal structures of both Fab-antigen complexes illustrated high fidelity retention of the NGF epitope. These results suggest the potential for wide applicability of the LSM method for optimization of well-characterized antibodies during humanization.


Subject(s)
Antibodies, Monoclonal, Murine-Derived , Antigen-Antibody Complex , Epitopes , Mutagenesis , Nerve Growth Factor , Adult , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal, Murine-Derived/genetics , Antibodies, Monoclonal, Murine-Derived/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Complex/immunology , Cells, Cultured , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Female , Humans , Low Back Pain/drug therapy , Low Back Pain/immunology , Mice , Neoplasms/drug therapy , Neoplasms/immunology , Nerve Growth Factor/antagonists & inhibitors , Nerve Growth Factor/chemistry , Nerve Growth Factor/genetics , Nerve Growth Factor/immunology , Osteoarthritis/drug therapy , Osteoarthritis/immunology , Pain Management/methods , Protein Structure, Quaternary , Single-Chain Antibodies
15.
Bioconjug Chem ; 25(2): 240-50, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24359082

ABSTRACT

Antibody drug conjugates (ADCs) are becoming an important new class of therapeutic agents for the treatment of cancer. ADCs are produced through the linkage of a cytotoxic small molecule (drug) to monoclonal antibodies that target tumor cells. Traditionally, most ADCs rely on chemical conjugation methods that yield heterogeneous mixtures of varying number of drugs attached at different positions. The potential benefits of site-specific drug conjugation in terms of stability, manufacturing, and improved therapeutic index has recently led to the development of several new site-specific conjugation technologies. However, detailed characterization of the degree of site specificity is currently lacking. In this study we utilize mass spectrometry to characterize the extent of site-specificity of an enzyme-based site-specific antibody-drug conjugation technology that we recently developed. We found that, in addition to conjugation of the engineered site, a small amount of aglycosylated antibody present in starting material led to conjugation at position Q295, resulting in approximately 1.3% of off-target conjugation. Based on our detection limits, we show that Q295N mutant eliminates the off-target conjugation yielding highly homogeneous conjugates that are better than 99.8% site-specific. Our study demonstrates the importance of detailed characterization of ADCs and describes methods that can be utilized to characterize not only our enzyme based conjugates, but also ADCs generated by other conjugation technologies.


Subject(s)
Antibodies/chemistry , Pharmaceutical Preparations/chemistry , Tandem Mass Spectrometry/methods , Transglutaminases/chemistry , Chromatography, Liquid
16.
Chem Biol ; 20(2): 161-7, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23438745

ABSTRACT

Antibody drug conjugates (ADCs) are a therapeutic class offering promise for cancer therapy. The attachment of cytotoxic drugs to antibodies can result in an effective therapy with better safety potential than nontargeted cytotoxics. To understand the role of conjugation site, we developed an enzymatic method for site-specific antibody drug conjugation using microbial transglutaminase. This allowed us to attach diverse compounds at multiple positions and investigate how the site influences stability, toxicity, and efficacy. We show that the conjugation site has significant impact on ADC stability and pharmacokinetics in a species-dependent manner. These differences can be directly attributed to the position of the linkage rather than the chemical instability, as was observed with a maleimide linkage. With this method, it is possible to produce homogeneous ADCs and tune their properties to maximize the therapeutic window.


Subject(s)
Antibodies/chemistry , Antineoplastic Agents/chemistry , Immunoconjugates/chemistry , Animals , Antibodies/immunology , Half-Life , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/immunology , Mice , Neoplasms/drug therapy , Rats , Transglutaminases/metabolism , Tubulin Modulators/chemistry
17.
J Biol Chem ; 288(15): 10805-18, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23430252

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor protein levels by diverting it to lysosomes. Monoclonal antibody therapeutics aimed to neutralize PCSK9 have been shown to successfully lower serum LDL levels; however, we previously found that such therapeutic antibodies are subject to PCSK9-mediated clearance. In this study, we discovered that PCSK9 interacts via its C-terminal domain directly and in a pH-dependent manner with amyloid precursor protein as well as its closely related family member, amyloid precursor protein-like protein 2. Furthermore, we determined that amyloid precursor protein-like protein-2, but not amyloid precursor protein, is involved in mediating postendocytic delivery of PCSK9 to lysosomes and is therefore important for PCSK9 function. Based on our data, we propose a model for a lysosomal transport complex by which a soluble protein can target another protein for degradation from the luminal side of the membrane by bridging it to a lysosomally targeted transmembrane protein.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Endocytosis/physiology , Lysosomes/metabolism , Models, Biological , Nerve Tissue Proteins/metabolism , Proprotein Convertases/metabolism , Proteolysis , Serine Endopeptidases/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Lysosomes/genetics , Mice , Nerve Tissue Proteins/genetics , Proprotein Convertase 9 , Proprotein Convertases/genetics , Protein Transport/physiology , Serine Endopeptidases/genetics
18.
J Pharmacol Exp Ther ; 340(2): 228-36, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22019884

ABSTRACT

Proprotein convertase substilisin/kexin type 9 (PCSK9) promotes the degradation of low-density lipoprotein (LDL) receptor (LDLR) and thereby increases serum LDL-cholesterol (LDL-C). We have developed a humanized monoclonal antibody that recognizes the LDLR binding domain of PCSK9. This antibody, J16, and its precursor mouse antibody, J10, potently inhibit PCSK9 binding to the LDLR extracellular domain and PCSK9-mediated down-regulation of LDLR in vitro. In vivo, J10 effectively reduces serum cholesterol in C57BL/6 mice fed normal chow. J16 reduces LDL-C in healthy and diet-induced hypercholesterolemic cynomologous monkeys, but does not significantly affect high-density lipoprotein-cholesterol. Furthermore, J16 greatly lowered LDL-C in hypercholesterolemic monkeys treated with the HMG-CoA reductase inhibitor simvastatin. Our data demonstrate that anti-PCSK9 antibody is a promising LDL-C-lowering agent that is both efficacious and potentially additive to current therapies.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Cholesterol, LDL/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Primates , Proprotein Convertases/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Catalytic Domain/immunology , Cell Line, Tumor , Cholesterol/blood , Cholesterol, Dietary/administration & dosage , Cholesterol, Dietary/pharmacology , Cholesterol, HDL/blood , Cholesterol, HDL/drug effects , Cholesterol, LDL/blood , Dietary Fats/administration & dosage , Dietary Fats/pharmacology , Dose-Response Relationship, Drug , Drug Therapy, Combination/methods , Epitopes/immunology , Female , Fluorobenzenes/pharmacology , Fluorobenzenes/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hypercholesterolemia/blood , Hypercholesterolemia/chemically induced , Hypercholesterolemia/drug therapy , Liver/drug effects , Liver/metabolism , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Proprotein Convertase 9 , Proprotein Convertases/immunology , Proprotein Convertases/pharmacology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptors, LDL/metabolism , Rosuvastatin Calcium , Serine Endopeptidases/blood , Serine Endopeptidases/immunology , Serine Endopeptidases/pharmacology , Simvastatin/pharmacology , Simvastatin/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
19.
Anesthesiology ; 115(1): 189-204, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21602663

ABSTRACT

Nerve growth factor (NGF) was originally discovered as a neurotrophic factor essential for the survival of sensory and sympathetic neurons during development. However, in the adult NGF has been found to play an important role in nociceptor sensitization after tissue injury. The authors outline mechanisms by which NGF activation of its cognate receptor, tropomyosin-related kinase A receptor, regulates a host of ion channels, receptors, and signaling molecules to enhance acute and chronic pain. The authors also document that peripherally restricted antagonism of NGF-tropomyosin-related kinase A receptor signaling is effective for controlling human pain while appearing to maintain normal nociceptor function. Understanding whether there are any unexpected adverse events and how humans may change their behavior and use of the injured/degenerating tissue after significant pain relief without sedation will be required to fully appreciate the patient populations that may benefit from these therapies targeting NGF.


Subject(s)
Analgesics/pharmacology , Analgesics/therapeutic use , Nerve Growth Factors/antagonists & inhibitors , Pain/drug therapy , Receptor, trkA/antagonists & inhibitors , Adult , Animals , Brain-Derived Neurotrophic Factor/physiology , Disease Models, Animal , Humans , Nerve Growth Factors/physiology , Neuroma/pathology , Nociceptors/drug effects , Nociceptors/physiology , Receptor, trkA/physiology , Receptors, Nerve Growth Factor/metabolism , Signal Transduction/drug effects
20.
N Engl J Med ; 363(16): 1521-31, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20942668

ABSTRACT

BACKGROUND: Increased expression of nerve growth factor in injured or inflamed tissue is associated with increased pain. This proof-of-concept study was designed to investigate the safety and analgesic efficacy of tanezumab, a humanized monoclonal antibody that binds and inhibits nerve growth factor. METHODS: We randomly assigned 450 patients with osteoarthritis of the knee to receive tanezumab (administered at a dose of 10, 25, 50, 100, or 200 µg per kilogram of body weight) or placebo on days 1 and 56. The primary efficacy measures were knee pain while walking and the patient's global assessment of response to therapy. We also assessed pain, stiffness, and physical function using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC); the rate of response using the criteria of the Outcome Measures for Rheumatology Committee and Osteoarthritis Research Society International Standing Committee for Clinical Trials Response Criteria Initiative (OMERACT-OARSI); and safety. RESULTS: When averaged over weeks 1 through 16, the mean reductions from baseline in knee pain while walking ranged from 45 to 62% with various doses of tanezumab, as compared with 22% with placebo (P<0.001). Tanezumab, as compared with placebo, was also associated with significantly greater improvements in the response to therapy as assessed with the use of the patients' global assessment measure (mean increases in score of 29 to 47% with various doses of tanezumab, as compared with 19% with placebo; P≤0.001). The rate of response according to the OMERACT-OARSI criteria ranged from 74 to 93% with tanezumab treatment, as compared with 44% with placebo (P<0.001). The rates of adverse events were 68% and 55% in the tanezumab and placebo groups, respectively. The most common adverse events among tanezumab-treated patients were headache (9% of the patients), upper respiratory tract infection (7%), and paresthesia (7%). CONCLUSIONS: In this proof-of-concept study, treatment with tanezumab was associated with a reduction in joint pain and improvement in function, with mild and moderate adverse events, among patients with moderate-to-severe osteoarthritis of the knee. (Funded by Rinat Neuroscience; ClinicalTrials.gov number, NCT00394563.).


Subject(s)
Antibodies, Monoclonal/therapeutic use , Osteoarthritis, Knee/drug therapy , Pain/drug therapy , Receptor, Nerve Growth Factor/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal, Humanized , Female , Headache/chemically induced , Humans , Injections, Intravenous , Male , Middle Aged , Osteoarthritis, Knee/complications , Pain/etiology , Pain Measurement , Paresthesia/chemically induced , Respiratory Tract Infections/etiology , Walking
SELECTION OF CITATIONS
SEARCH DETAIL
...