Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Infect Dis ; 71(6): 1481-1490, 2020 09 12.
Article in English | MEDLINE | ID: mdl-31621832

ABSTRACT

BACKGROUND: Chemoprophylaxis vaccination with sporozoites (CVac) with chloroquine induces protection against a homologous Plasmodium falciparum sporozoite (PfSPZ) challenge, but whether blood-stage parasite exposure is required for protection remains unclear. Chloroquine suppresses and clears blood-stage parasitemia, while other antimalarial drugs, such as primaquine, act against liver-stage parasites. Here, we evaluated CVac regimens using primaquine and/or chloroquine as the partner drug to discern whether blood-stage parasite exposure impacts protection against homologous controlled human malaria infection. METHODS: In a Phase I, randomized, partial double-blind, placebo-controlled study of 36 malaria-naive adults, all CVac subjects received chloroquine prophylaxis and bites from 12-15 P. falciparum-infected mosquitoes (CVac-chloroquine arm) at 3 monthly iterations, and some received postexposure primaquine (CVac-primaquine/chloroquine arm). Drug control subjects received primaquine, chloroquine, and uninfected mosquito bites. After a chloroquine washout, subjects, including treatment-naive infectivity controls, underwent homologous, PfSPZ controlled human malaria infection and were monitored for parasitemia for 21 days. RESULTS: No serious adverse events occurred. During CVac, all but 1 subject in the study remained blood-smear negative, while only 1 subject (primaquine/chloroquine arm) remained polymerase chain reaction-negative. Upon challenge, compared to infectivity controls, 3/3 chloroquine arm subjects displayed delayed patent parasitemia (P = .01) but not sterile protection, while 3/11 primaquine/chloroquine subjects remained blood-smear negative. CONCLUSIONS: CVac-primaquine/chloroquine is safe and induces sterile immunity to P. falciparum in some recipients, but a single 45 mg dose of primaquine postexposure does not completely prevent blood-stage parasitemia. Unlike previous studies, CVac-chloroquine did not produce sterile immunity. CLINICAL TRIALS REGISTRATION: NCT01500980.


Subject(s)
Antimalarials , Malaria, Falciparum , Adult , Animals , Antimalarials/therapeutic use , Chemoprevention , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Sporozoites , Vaccination
2.
Am J Trop Med Hyg ; 100(6): 1466-1476, 2019 06.
Article in English | MEDLINE | ID: mdl-31017084

ABSTRACT

18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2-3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1-8.1 days) than blood smears (11.0 days; 95% CI: 10.3-11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6-13.3 days). Discrepant analysis showed that the risk of a blood smear-positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.


Subject(s)
Malaria/diagnosis , Plasmodium/genetics , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/blood , Biomarkers/blood , Humans , Multiplex Polymerase Chain Reaction , Plasmodium/isolation & purification , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
3.
Sci Transl Med ; 9(371)2017 01 04.
Article in English | MEDLINE | ID: mdl-28053159

ABSTRACT

Immunization of humans with whole sporozoites confers complete, sterilizing immunity against malaria infection. However, achieving consistent safety while maintaining immunogenicity of whole parasite vaccines remains a formidable challenge. We generated a genetically attenuated Plasmodium falciparum (Pf) malaria parasite by deleting three genes expressed in the pre-erythrocytic stage (Pf p52-/p36-/sap1-). We then tested the safety and immunogenicity of the genetically engineered (Pf GAP3KO) sporozoites in human volunteers. Pf GAP3KO sporozoites were delivered to 10 volunteers using infected mosquito bites with a single exposure consisting of 150 to 200 bites per subject. All subjects remained blood stage-negative and developed inhibitory antibodies to sporozoites. GAP3KO rodent malaria parasites engendered complete, protracted immunity against infectious sporozoite challenge in mice. The results warrant further clinical testing of Pf GAP3KO and its potential development into a vaccine strain.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Sporozoites/genetics , Adult , Animals , Antibodies, Protozoan/blood , Female , Gene Deletion , Genetic Engineering , Humans , Immunoglobulin G/blood , Malaria Vaccines/genetics , Male , Mice , Mice, Inbred BALB C , Middle Aged , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Sporozoites/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...