Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12573, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537240

ABSTRACT

It has previously been shown that the zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window for which Gata3 is required for proper formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 in cochlear neurosensory development in the late prosensory stages, we used the Sox2-creERT2 mouse line to target and conditionally delete Gata3 at E11.5, a timepoint before cells have fully committed to a neurosensory fate. While the inner ears of Sox2-creERT2: Gata3 f/f mice appear normal with no gross structural defects, the sensory cells in the organ of Corti are partially lost and disorganized in an increasing severity from base to apex. Additionally, spiral ganglion neurons display aberrant peripheral projections, including increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-creERT2: Gata3 f/+ mice show a reduced aberrant phenotype in comparison to the homozygous mutant, supporting the hypothesis that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific expression level of Gata3 is required. Therefore, this study provides evidence that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory and neuronal cells in late proneurosensory stages.


Subject(s)
Ear, Inner , GATA3 Transcription Factor , Animals , Mice , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Mice, Knockout , Ear, Inner/metabolism , Cochlea/metabolism , Epithelium/metabolism , Gene Expression Regulation, Developmental
2.
Res Sq ; 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090645

ABSTRACT

It has been previously shown that zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window to which Gata3 is required for the formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 on cochlear neurosensory development in the late prosensory stages, we used the Sox2-cre ERT2 mouse line to target and conditionally delete Gata3 at E11.5 before the cells have fully committed to a neurosensory fate. While the inner ears of Sox2-cre ERT2 : Gata3 f/f mice appear morphologically normal, the sensory cells in the organ of Corti are partially lost and disorganized in a basal to apical gradient with the apex demonstrating the more severe phenotype. Additionally, spiral ganglion neurons display aberrant peripheral projections, such as increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-cre ERT2 : Gata3 f/+ mice show a reduced phenotype in comparison to the homozygous mutant, supporting the concept that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific level of Gata3 is required. Therefore, our studies confirm that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory cells in the late proneurosensory stages.

3.
Front Neurosci ; 15: 779871, 2021.
Article in English | MEDLINE | ID: mdl-35153658

ABSTRACT

During development the afferent neurons of the inner ear make precise wiring decisions in the hindbrain reflective of their topographic distribution in the periphery. This is critical for the formation of sensory maps capable of faithfully processing both auditory and vestibular input. Disorganized central projections of inner ear afferents in Fzd3 null mice indicate Wnt/PCP signaling is involved in this process and ear transplantation in Xenopus indicates that Fzd3 is necessary in the ear but not the hindbrain for proper afferent navigation. However, it remains unclear in which cell type of the inner ear Fzd3 expression is influencing the guidance of inner ear afferents to their proper synaptic targets in the hindbrain. We utilized Atoh1-cre and Neurod1-cre mouse lines to conditionally knockout Fzd3 within the mechanosensory hair cells of the organ of Corti and within the inner ear afferents, respectively. Following conditional deletion of Fzd3 within the hair cells, the central topographic distribution of inner ear afferents was maintained with no gross morphological defects. In contrast, conditional deletion of Fzd3 within inner ear afferents leads to central pathfinding defects of both cochlear and vestibular afferents. Here, we show that Fzd3 is acting in a cell autonomous manner within inner ear afferents to regulate central pathfinding within the hindbrain.

SELECTION OF CITATIONS
SEARCH DETAIL
...