Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dokl Biochem Biophys ; 479(1): 127-130, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29779115

ABSTRACT

Genes encoding two three-finger toxins TFT-AF and TFT-VN, nucleotide sequences of which were earlier determined by cloning cDNA from venom glands of vipers Azemiops feae and Vipera nikolskii, respectively, were expressed for the first time in E. coli cells. The biological activity of these toxins was studied by electrophysiological techniques, calcium imaging, and radioligand analysis. It was shown for the first time that viper three-finger toxins are antagonists of nicotinic acetylcholine receptors of neuronal and muscle type.


Subject(s)
Muscles/metabolism , Neurons/metabolism , Receptors, Nicotinic/metabolism , Recombinant Proteins/metabolism , Toxins, Biological/metabolism , Viperidae/genetics , Animals , Calcium Signaling , Cell Line, Tumor , Humans , Muscles/cytology , Neurons/cytology , Recombinant Proteins/genetics , Toxins, Biological/genetics
2.
Dokl Biochem Biophys ; 475(1): 253-255, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28864899

ABSTRACT

Fluorescent derivatives are widely used to study the structure and functions of proteins. Quantum dots (QDs), fluorescent semiconductor nanocrystals, have a high quantum yield and are much more resistant to bleaching compared to organic dyes. Conjugates of α-neurotoxins with QDs were used for visualization of human α7 acetylcholine receptors heterologously expressed in GH4C1 pituitary adenoma cells. Specific staining of cells by the conjugated toxins was observed.


Subject(s)
Neurotoxins/chemistry , Neurotoxins/metabolism , Quantum Dots/chemistry , Snake Venoms/chemistry , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Cell Line, Tumor , Humans , Molecular Imaging
3.
Biomed Khim ; 63(3): 241-247, 2017 May.
Article in Russian | MEDLINE | ID: mdl-28781257

ABSTRACT

A role of nicotinic acetylcholine receptors (nAChR) in the development of Parkinson's disease (PD) has been investigated using two mouse models corresponding to the presymptomatic stage and the early symptomatic stage of PD. Quantitative determination of nAChR in the striatum and substantia nigra (SN) was performed using the radioactive derivatives of epibatidine, -conotoxin MII, and -bungarotoxin as ligands. The number of ligand-binding sites changed differently depending on their location in the brain, the stage of the disease and the receptor subtype. Epibatidine binding decreased in the striatum to 66% and 70% at the presymptomatic and early symptomatic stages, respectively, whereas in SN a 160% increase was registered at the presymptomatic stage. The -conotoxin MII binding on striatal dopaminergic axonal terminals at the presymptomatic stage decreased by 20% and at the symptomatic stage it demonstrated a further decrease. The increase in -bungarotoxin binding at the presymptomatic stage and a decrease at the early symptomatic stage was observed in the striatum. In SN, the level of -bungarotoxin binding decreased at the presymptomatic stage and kept constant at the symptomatic stage. The significant decrease in the expression of Chrna4 and Chrna6 genes encoding 4 and 6 nAChR subunits was observed in SN at the early symptomatic stage, while a 13-fold increase in expression of the Chrna7 gene encoding the 7 nAChR subunit was detected at the presymptomatic stage. The data obtained suggest possible involvement of nAChR in compensatory mechanisms at early PD stages.


Subject(s)
Corpus Striatum/metabolism , Parkinson Disease, Secondary/genetics , Receptors, Nicotinic/genetics , Substantia Nigra/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Animals , Asymptomatic Diseases , Binding Sites , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bungarotoxins/pharmacology , Conotoxins/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/physiopathology , Disease Models, Animal , Disease Progression , Gene Expression Regulation , Humans , Ligands , Mice , Nicotinic Agonists/pharmacology , Organ Specificity , Parkinson Disease, Secondary/metabolism , Parkinson Disease, Secondary/physiopathology , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pyridines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Nicotinic/metabolism , Signal Transduction , Substantia Nigra/drug effects , Substantia Nigra/physiopathology , alpha7 Nicotinic Acetylcholine Receptor/metabolism
4.
Dokl Biochem Biophys ; 470(1): 338-341, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27817023

ABSTRACT

We studies the receptor-binding specificity of the synthetic peptide HAP (High Affinity Peptide) and its analogues, which are regarded as a model of the orthosteric site nicotinic acetylcholine receptors (nAChR). Using radioligand analysis, electrophysiology tests, and calcium imaging, we assessed the ability of HAP to interact with nAChR antagonists: long α-neurotoxins and α-conotoxins. A high affinity of HAP for α-bungarotoxin and the absence of its interaction with α-cobratoxin and α-conotoxins was found. The synthesized analogues of HAP in general retained the properties of the original peptide. Thus, HAP cannot be a model of a ligand-binding site.


Subject(s)
Cholinergic Agents/pharmacology , Peptide Fragments/metabolism , Receptors, Nicotinic/metabolism , Animals , Binding Sites , Bungarotoxins/pharmacology , Calcium/metabolism , Cell Line , Conotoxins/metabolism , Conotoxins/pharmacology , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Models, Molecular , Neurotoxins/metabolism , Neurotoxins/pharmacology , Oocytes , Patch-Clamp Techniques , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Peptide Library , Radioligand Assay , Rats , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/genetics , Torpedo , Voltage-Sensitive Dye Imaging , Xenopus laevis
5.
Dokl Biochem Biophys ; 468(1): 193-6, 2016 May.
Article in English | MEDLINE | ID: mdl-27417718

ABSTRACT

With the use of surface plasmon resonance (SPR) it was shown that ws-Lynx1, a water-soluble analog of the three-finger membrane-bound protein Lynx1, that modulates the activity of brain nicotinic acetylcholine receptors (nAChRs), interacts with the acetylcholine-binding protein (AChBP) with high affinity, K D = 62 nM. This result agrees with the earlier demonstrated competition of ws-Lynx1 with radioiodinated α-bungarotoxin for binding to AChBP. For the first time it was shown that ws-Lynx1 binds to GLIC, prokaryotic Cys-loop receptor (K D = 1.3 µM). On the contrary, SPR revealed that α-cobratoxin, a three-finger protein from cobra venom, does not bind to GLIC. Obtained results indicate that SPR is a promising method for analysis of topography of ws-Lynx1 binding sites using its mutants and those of AChBP and GLIC.


Subject(s)
Bacterial Proteins/metabolism , Brain/metabolism , Cobra Neurotoxin Proteins/metabolism , Cysteine Loop Ligand-Gated Ion Channel Receptors/metabolism , Membrane Glycoproteins/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Aplysia , Bacterial Proteins/chemistry , Binding Sites , Cell Line , Cell Line, Tumor , Cyanobacteria , Cysteine Loop Ligand-Gated Ion Channel Receptors/chemistry , Drosophila melanogaster , Elapid Venoms/chemistry , Elapid Venoms/metabolism , Elapidae , Escherichia coli , HEK293 Cells , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Models, Molecular , Protein Structure, Secondary , Surface Plasmon Resonance , alpha7 Nicotinic Acetylcholine Receptor/chemistry
6.
Front Cell Neurosci ; 9: 287, 2015.
Article in English | MEDLINE | ID: mdl-26283923

ABSTRACT

Trigeminal nerves in meninges are implicated in generation of nociceptive firing underlying migraine pain. However, the neurochemical mechanisms of nociceptive firing in meningeal trigeminal nerves are little understood. In this study, using suction electrode recordings from peripheral branches of the trigeminal nerve in isolated rat meninges, we analyzed spontaneous and capsaicin-induced orthodromic spiking activity. In control, biphasic single spikes with variable amplitude and shapes were observed. Application of the transient receptor potential vanilloid 1 (TRPV1) agonist capsaicin to meninges dramatically increased firing whereas the amplitudes and shapes of spikes remained essentially unchanged. This effect was antagonized by the specific TRPV1 antagonist capsazepine. Using the clustering approach, several groups of uniform spikes (clusters) were identified. The clustering approach combined with capsaicin application allowed us to detect and to distinguish "responder" (65%) from "non-responder" clusters (35%). Notably, responders fired spikes at frequencies exceeding 10 Hz, high enough to provide postsynaptic temporal summation of excitation at brainstem and spinal cord level. Almost all spikes were suppressed by tetrodotoxin (TTX) suggesting an involvement of the TTX-sensitive sodium channels in nociceptive signaling at the peripheral branches of trigeminal neurons. Our analysis also identified transient (desensitizing) and long-lasting (slowly desensitizing) responses to the continuous application of capsaicin. Thus, the persistent activation of nociceptors in capsaicin-sensitive nerve fibers shown here may be involved in trigeminal pain signaling and plasticity along with the release of migraine-related neuropeptides from TRPV1 positive neurons. Furthermore, cluster analysis could be widely used to characterize the temporal and neurochemical profiles of other pain transducers likely implicated in migraine.

8.
Life Sci ; 80(24-25): 2202-5, 2007 May 30.
Article in English | MEDLINE | ID: mdl-17275855

ABSTRACT

Neuronal nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunit are well represented in the brain and some non-neuronal tissues, and their malfunctioning is associated with diverse pathologies. Therefore, detection and quantification of alpha7 nAChR are important tasks. The affinity-purified antibodies were prepared against the 1-23 and 179-190 fragments of the human and rat alpha7 nAChR extracellular domain. The specificity and selectivity of these alpha7 (1-23) and alpha7 (179-190) antibodies was tested by ELISA in model systems: the E. coli-expressed alpha7 subunit extracellular domain and the pituitary cell line GH(4)C(1) stably expressing human alpha7 nAChR. On the rat brain slices two antibodies and biotinylated alpha-cobratoxin specifically stained the hippocampus region known to be rich in alpha7 nAChR. Western blot analysis revealed that in the human thalamus membranes and in rat brain membranes, antibodies alpha7 (1-23) stained a single band of 62 kDa, while the alpha7 (179-190) antibodies stained a doublet of 53-54 kDa. The results obtained show that utilization of model systems and a combination of several antibodies with appropriately labeled toxins may provide better ways for detection of alpha7 nAChR.


Subject(s)
Antibodies/immunology , Cobra Neurotoxin Proteins/chemistry , Receptors, Nicotinic/analysis , Animals , Antibody Affinity/immunology , Biotinylation , Brain Chemistry , Enzyme-Linked Immunosorbent Assay/methods , Hippocampus/chemistry , Humans , Molecular Weight , Peptide Fragments/chemistry , Peptide Fragments/immunology , Rats , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/immunology , Reproducibility of Results , Thalamus/chemistry , alpha7 Nicotinic Acetylcholine Receptor
10.
Biochemistry (Mosc) ; 71(7): 749-58, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16903829

ABSTRACT

We have compared specificity of a panel of polyclonal antibodies against synthetic fragments of the alpha7 subunit of homooligomeric acetylcholine receptor (AChR) and some subunits of heteromeric AChRs. The antibody interaction with extracellular domain of alpha7 subunit of rat AChR (residues 7-208) produced by heterologous expression in E. coli and rat adrenal membranes was investigated by the ELISA method. For comparison, membranes from the Torpedo californica ray electric organ enriched in muscle-type AChR and polyclonal antibodies raised against the extracellular domain (residues 1-209) of the T. californica AChR alpha1 subunit were also used. Antibody specificity was also characterized by Western blot analysis using rat AChR extracellular domain alpha7 (7-208) and the membrane-bound T. californica AChR. Epitope localization was analyzed within the framework of AChR extracellular domain model based on the crystal structure of acetylcholine-binding protein available in the literature. According to this analysis, the 179-190 epitope is located on loop C, which is exposed and mobile. Use of antibodies against alpha7 (179-190) revealed the presence of alpha7 AChR in rat adrenal membranes.


Subject(s)
Antibody Specificity , Receptors, Nicotinic/immunology , Adrenal Cortex/cytology , Adrenal Cortex/metabolism , Amino Acid Sequence , Animals , Antibodies/chemistry , Antibodies/immunology , Binding Sites , Molecular Sequence Data , Neurons/metabolism , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptide Fragments/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/immunology , Protein Subunits/metabolism , Rats , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Torpedo/metabolism , alpha7 Nicotinic Acetylcholine Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...