Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408461

ABSTRACT

Volatile metabolites in exhaled air have promising potential as diagnostic biomarkers. However, the combination of low mass, similar chemical composition, and low concentrations introduces the challenge of sorting the data to identify markers of value. In this paper, we report the development of pyAIR, a software tool for searching for volatile organic compounds (VOCs) markers in multi-group datasets, tailored for Thermal-Desorption Gas-Chromatography High Resolution Mass-Spectrometry (TD-GC-HRMS) output. pyAIR aligns the compounds between samples by spectral similarity coupled with retention times (RT), and statistically compares the groups for compounds that differ by intensity. This workflow was successfully tested and evaluated on gaseous samples spiked with 27 model VOCs at six concentrations, divided into three groups, down to 0.3 nL/L. All analytes were correctly detected and aligned. More than 80% were found to be significant markers with a p-value < 0.05; several were classified as possibly significant markers (p-value < 0.1), while a few were removed due to background level. In all group comparisons, low rates of false markers were found. These results showed the potential of pyAIR in the field of trace-level breathomics, with the capability to differentially examine several groups, such as stages of illness.


Subject(s)
Breath Tests , Volatile Organic Compounds , Biomarkers/analysis , Breath Tests/methods , Gas Chromatography-Mass Spectrometry/methods , Software , Volatile Organic Compounds/analysis
2.
Inorg Chem ; 60(15): 10909-10922, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34292708

ABSTRACT

In recent years, development of new energetic compounds and formulations, suitable for ignition with relatively low-power lasers, is a highly active and competitive field of research. The main goal of these efforts is focused on achieving and providing much safer solutions for various detonator and initiator systems. In this work, we prepared, characterized, and studied thermal and ignition properties of a new laser-ignitable compound, based on the 5,6-bis(ethylnitroamino)-N'2,N'3-dihydroxypyrazine-2,3-bis(carboximidamide) (DS3) proligand. This new energetic proligand was prepared in three steps, starting with 5,6-bis(ethylamino)-pyrazine-2,3-dicarbonitrile. Crystallography studies of the DS3-derived Cu(II) complex (DS4) revealed a unique stacked antenna-type structure of the latter compound. DS4 has an exothermal temperature of 154.5 °C and was calculated to exhibit a velocity of detonation of 6.36 km·s-1 and a detonation pressure of 15.21 GPa. DS4 showed properties of a secondary explosive, having sensitivity to impact, friction, and electrostatic discharge of 8 J, 360 N, and 12 mJ, respectively. In order to study the mechanism of ignition by a laser (using a diode laser, 915 nm), we conducted a set of experiments that enabled us to characterize a photothermal ignition mechanism. Furthermore, we found that a single pulse, with a time duration of 1 ms and with a total energy of 4.6 mJ, was sufficient for achieving a consistent and full ignition of DS4. Dual-pulse experiments, with variable time intervals between the laser pulses, showed that DS4 undergoes ignition via a photothermal mechanism. Finally, calculating the chemical mechanism of the formation of the complex DS4 and modeling its anhydrous and hydrated crystal structures (density functional theory calculations using Gaussian and HASEM software) allowed us to pinpoint a more precise location of water molecules in experimental crystallographic data. These results suggest that DS4 has potential for further development to a higher technology readiness level and for integration into small-size safe detonator systems as for many civil, aerospace, and defense applications.

3.
ACS Cent Sci ; 6(1): 54-75, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31989026

ABSTRACT

Extensive density functional theory (DFT) calculation and data analysis on molecular and crystal level features of 60 reported energetic materials (EMs) allowed us to define key descriptors that are characteristics of these compounds' thermostability. We see these descriptors as reminiscent of "Lipinski's rule of 5", which revolutionized the design of new orally active pharmaceutical molecules. The proposed descriptors for thermostable EMs are of a type of molecular design, location and type of the weakest bond in the energetic molecule, as well as specific ranges of oxygen balance, crystal packing coefficient, Hirshfeld surface hydrogen bonding, and crystal lattice energy. On this basis, we designed three new thermostable EMs containing bridged, 3,5-dinitropyrazole moieties, HL3, HL7, and HL9, which were synthesized, characterized, and evaluated in small-scale field detonation experiments. The best overall performing compound HL7 exhibited an onset decomposition temperature of 341 °C and has a density of 1.865 g cm-3, and the calculated velocity of detonation and maximum detonation pressure were 8517 m s-1 and 30.6 GPa, respectively. Considering HL7's impressive safety parameters [impact sensitivity (IS) = 22 J; friction sensitivity (FS) = 352; and electrostatic discharge sensitivity (ESD) = 1.05 J] and the results of small-scale field detonation experiments, the proposed guidelines should further promote the rational design of novel thermostable EMs, suitable for deep well drilling, space exploration, and other high-value defense and civil applications.

4.
Molecules ; 24(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779257

ABSTRACT

Due to a significant and prolific activity in the field of design and synthesis of new energetic molecules, it becomes increasingly difficult to introduce new explosophore structures with attractive properties. In this work, we synthesized a trans-bimane-based energetic material-3,7-diamino-2,6-dinitro-1H,5H-pyrazolo-[1,2-a]pyrazole-1,5-dione (4), the structure of which was comprehensively analyzed by a variety of advanced spectroscopic methods and by X-ray crystallo-graphy (with density of 1.845 g·cm-3 at 173 K). Although obtained crystals of 4 contained solvent molecules in their structure, state-of-the-art density functional theory (DFT) computational techniques allowed us to predict that solvent-free crystals of this explosive would preserve a similar tightly packed planar layered molecular arrangement, with the same number of molecules of 4 per unit cell, but with a smaller unit cell volume and therefore higher energy density. Explosive 4 was found to be heat resistant, with an onset decomposition temperature of 328.8 °C, and was calculated to exhibit velocity of detonation in a range of 6.88-7.14 km·s-1 and detonation pressure in the range of 19.14-22.04 GPa, using for comparison both HASEM and the EXPLO 5 software. Our results indicate that the trans-bimane explosophore could be a viable platform for the development of new thermostable energetic materials.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/chemistry , Explosive Agents/chemistry , Hot Temperature , Pyrazoles/chemistry , Software , Solvents/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...