Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (172)2021 06 30.
Article in English | MEDLINE | ID: mdl-34279494

ABSTRACT

The structure of the gut tissue facilitates close and mutualistic interactions between the host and the gut microbiota. These cross-talks are crucial for maintaining local and systemic homeostasis; changes to gut microbiota composition (dysbiosis) associate with a wide array of human diseases. Methods for dissecting host-microbiota interactions encompass an inherent tradeoff among preservation of physiological tissue structure (when using in vivo animal models) and the level of control over the experiment factors (as in simple in vitro cell culture systems). To address this tradeoff, Yissachar et al. recently developed an intestinal organ culture system. The system preserves a naive colon tissue construction and cellular mechanisms and it also permits tight experimental control, facilitating experimentations that cannot be readily performed in vivo. It is optimal for dissecting short-term responses of various gut components (such as epithelial, immunological and neuronal elements) to luminal perturbations (including anaerobic or aerobic microbes, whole microbiota samples from mice or humans, drugs and metabolites). Here, we present a detailed description of an optimized protocol for organ culture of multiple gut fragments using a custom-made gut culture device. Host responses to luminal perturbations can be visualized by immunofluorescence staining of tissue sections or whole-mount tissue fragments, fluorescence in-situ hybridization (FISH), or time-lapse imaging. This system supports a wide array of readouts, including next-generation sequencing, flow cytometry, and various cellular and biochemical assays. Overall, this three-dimensional organ culture system supports the culture of large, intact intestinal tissues and has broad applications for high-resolution analysis and visualization of host-microbiota interactions in the local gut environment.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Dysbiosis , Gastrointestinal Tract , Mice , Organ Culture Techniques
2.
Life Sci ; 258: 118214, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32768585

ABSTRACT

Large numbers of rodents are often used in the study of disease progression and in the evaluation of its potential treatments. To avoid subjective observation and to minimize home cage interference, we developed a computerized home cage monitoring system (HCMS100) based on a standard cage rack adapted with a single laser beam and a detector mounted on each cage, enabling to monitor mice movements based on laser beam interruptions. This retrofit system provided continuous and uninterrupted monitoring of spontaneous movement of a group of mice in a home cage. Validity was evaluated using disease state induced by LPS modelling bacterial infection and by influenza virus. RESULTS: Spontaneous activity of different number of mice (2-8) per cage showed the expected circadian rhythm with increased activity during the night, and its extent dependent on the number of mice in the cage. Females and males show similar circadian rhythm. Intranasal LPS administration and pulmonary infection with live influenza virus resulted in major reduction of mice activity along disease progression. Increase in activity over time was a good indicator of the recovery process from both LPS exposure and the flu infection. CONCLUSIONS: HCMS100 was shown to be a reliable, inexpensive, easy to use system that requires no changes in the common housing of various experimental animals (mice, hamsters, rats etc.). With minimal intervention, HCMS100 provides a continuous record of group activity with clear pattern of circadian rhythm, allowing long term recording of home cage activity even in restricted access environments.


Subject(s)
Disease Progression , Housing, Animal , Lipopolysaccharides/toxicity , Orthomyxoviridae Infections/physiopathology , Orthomyxoviridae , Recovery of Function/physiology , Animals , Circadian Rhythm/physiology , Female , Housing, Animal/trends , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Orthomyxoviridae Infections/psychology , Recovery of Function/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...