Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
MedComm (2020) ; 5(5): e532, 2024 May.
Article in English | MEDLINE | ID: mdl-38645663

ABSTRACT

Alzheimer's disease (AD) constitutes a neurodegenerative disorder marked by a progressive decline in cognitive function and memory capacity. The accurate diagnosis of this condition predominantly relies on cerebrospinal fluid (CSF) markers, notwithstanding the associated burdens of pain and substantial financial costs endured by patients. This study encompasses subjects exhibiting varying degrees of cognitive impairment, encompassing individuals with subjective cognitive decline, mild cognitive impairment, and dementia, constituting a total sample size of 82 participants. The primary objective of this investigation is to explore the relationships among brain atrophy measurements derived from magnetic resonance imaging, atypical electroencephalography (EEG) patterns, behavioral assessment scales, and amyloid ß-protein (Aß) indicators. The findings of this research reveal that individuals displaying reduced Aß1-42/Aß-40 levels exhibit significant atrophy in the frontotemporal lobe, alongside irregularities in various parameters related to EEG frequency characteristics, signal complexity, inter-regional information exchange, and microstates. The study additionally endeavors to estimate Aß1-42/Aß-40 content through the application of a random forest algorithm, amalgamating structural data, electrophysiological features, and clinical scales, achieving a remarkable predictive precision of 91.6%. In summary, this study proposes a cost-effective methodology for acquiring CSF markers, thereby offering a valuable tool for the early detection of AD.

2.
NPJ Aging ; 10(1): 1, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167843

ABSTRACT

One critical manifestation of neurological deterioration is the sign of cognitive decline. Causes of cognitive decline include but are not limited to: aging, cerebrovascular disease, Alzheimer's disease, and trauma. Currently, the primary tool used to examine cognitive decline is scale. However, scale examination has drawbacks such as its clinician subjectivity and inconsistent results. This study attempted to use resting-state EEG to construct a cognitive assessment model that is capable of providing a more scientific and robust evaluation on cognition levels. In this study, 75 healthy subjects, 99 patients with Mild Cognitive Impairment (MCI), and 78 patients with dementia were involved. Their resting-state EEG signals were collected twice, and the recording devices varied. By matching these EEG and traditional scale results, the proposed cognition assessment model was trained based on Adaptive Boosting (AdaBoost) and Support Vector Machines (SVM) methods, mapping subjects' cognitive levels to a 0-100 test score with a mean error of 4.82 (<5%). This study is the first to establish a continuous evaluation model of cognitive decline on a large sample dataset. Its cross-device usability also suggests universality and robustness of this EEG model, offering a more reliable and affordable way to assess cognitive decline for clinical diagnosis and treatment as well. Furthermore, the interpretability of features involved may further contribute to the early diagnosis and superior treatment evaluation of Alzheimer's disease.

3.
Article in English | MEDLINE | ID: mdl-37665696

ABSTRACT

The non-implantation bi-directional brain-computer interface (BCI) is a neural interface technology that enables direct two-way communication between the brain and the external world by both "reading" neural signals and "writing" stimulation patterns to the brain. This technology has vast potential applications, such as improving the quality of life for individuals with neurological and mental illnesses and even expanding the boundaries of human capabilities. Nonetheless, non-implantation bi-directional BCIs face challenges in generating real-time feedback and achieving compatibility between stimulation and recording. These issues arise due to the considerable overlap between electrical stimulation frequencies and electrophysiological recording frequencies, as well as the impediment caused by the skull to the interaction of external and internal currents. To address those challenges, this work proposes a novel solution that combines the temporal interference stimulation paradigm and minimally invasive skull modification. A longitudinal animal experiment has preliminarily validated the feasibility of the proposed method. In signal recording experiments, the average impedance of our scheme decreased by 4.59 kΩ , about 67%, compared to the conventional technique at 18 points. The peak-to-peak value of the Somatosensory Evoked Potential increased by 8%. Meanwhile, the signal-to-noise ratio of Steady-State Visual Evoked Potential increased by 5.13 dB, and its classification accuracy increased by 44%. The maximum bandwidth of the resting state rose by 63%. In electrical stimulation experiments, the signal-to-noise ratio of the low-frequency response evoked by our scheme rose by 8.04 dB, and no stimulation artifacts were generated. The experimental results show that signal quality in acquisition has significantly improved, and frequency-band isolation eliminates stimulation artifacts at the source. The acquisition and stimulation pathways are real-time compatible in this non-implantation bi-directional BCI solution, which can provide technical support and theoretical guidance for creating closed-loop adaptive systems coupled with particular application scenarios in the future.


Subject(s)
Artifacts , Brain-Computer Interfaces , Animals , Humans , Evoked Potentials, Visual , Quality of Life , Head
4.
Front Med Technol ; 4: 941686, 2022.
Article in English | MEDLINE | ID: mdl-36035774

ABSTRACT

Hypertension is one of the most prevalent chronic diseases that affects more than 20% of the adult population worldwide, but fortunately, most of their blood pressure can be effectively controlled via drug treatment. However, there still remains 5-30% of patients clinically who do not respond well to conventional medication, while the non-drug treatments currently existing are struggling with major drawbacks like irreversible nerve damage, huge side effects, and even non-effectiveness. In this study, based on the physiological regulation mechanism of blood pressure and state-of-the-art neuromodulation technique, we worked along with the vagus nerve stimulation scheme, developed, and explored whether and how a real-time neural recording and stimulation system could provide an insight into self-adaptive modulation in the blood pressure, in the hope to crack a crevice in the closed-loop treatment for resistant hypertension. Unlike traditional neuromodulation devices, additional signal recording and real-time wireless transmission functions are added to the same device to realize the features of a dynamic monitor and modulator. The system is tested both in vitro and in vivo, showing decent electrical performance of 8 kHz sampling rate and flexible stimulation outputs which sufficiently covers our needs in manipulating neural activities of interest. A relatively stable drop in the blood pressure resulting from stimulation was observed and specific patterns in the vagus nerve signals relating to blood pressure could also be primarily identified. This laid a solid foundation for further studies on the final realization of closed-loop automatic adjustment for resistive hypertension treatment.

5.
Article in English | MEDLINE | ID: mdl-35857723

ABSTRACT

The research on non-invasive BCI is nowadays hitting the bottleneck due to the humble quality of scalp EEG signals. Whereas invasive solutions that offer higher signal quality in contrast are suffocated in their spreading because of the potential surgical complication and health risks caused by electrode implantation. Therefore, it puts forward a necessity to explore a scheme that could both collect high-quality EEG signals and guarantee high-level operation safety.This study proposed a Minimally Invasive Local-skull Electrophysiological Modification method to improve scalp EEG signals qualities at specific brain regions. Six eight-month-old SD rats were used for in vivo verification experiment. A hole with a diameter of about 500 micrometers was drilled in the skull above the visual cortex of rats. Significant changes in rsEEG and SSVEP signals before and after modification were observed. After modification, the skull impedance of rats decreases by about 84 %, the average maximum bandwidth of rsEEG increase by 57 %, and the broadband SNR of SSVEP is increased by 5.13 dB. The time of piezoelectric drilling operation is strictly controlled under 30 seconds for each rat to prevent possible brain damage from overheating. Compared with traditional invasive procedures such as ECoG, Minimally Invasive Local-skull Electrophysiological Modification operation time is shorter and no electrode implantation is needed while it remarkably boosts the scalp EEG signal quality. This technical solution has the potential to replace the use of ECoG in certain application scenarios and further invigorate studies in the field of scalp EEG in the future.


Subject(s)
Electroencephalography , Skull , Animals , Electrocorticography , Electroencephalography/methods , Electrophysiological Phenomena , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...