Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 96(3): 1285-1304, 2023.
Article in English | MEDLINE | ID: mdl-37980659

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia, affecting individuals over 65. AD is also a multifactorial disease, with disease mechanisms incompletely characterized, and disease-modifying therapies are marginally effective. Biomarker signatures may shed light on the diagnosis, disease mechanisms, and the development of therapeutic targets. tRNA-derived RNA fragments (tRFs), a family of recently discovered small non-coding RNAs, have been found to be significantly enhanced in human AD hippocampus tissues. However, whether tRFs change in body fluids is unknown. OBJECTIVE: To investigate whether tRFs in body fluids are impacted by AD. METHODS: We first used T4 polynucleotide kinase-RNA-seq, a modified next-generation sequencing technique, to identify detectable tRFs in human cerebrospinal fluid and serum samples. The detectable tRFs were then compared in these fluids from control, AD, and mild cognitive impairment patients using tRF qRT-PCR. The stability of tRFs in serum was also investigated by checking the change in tRFs in response to protein digestion or exosome lysis. RESULTS: Among various tRFs, tRF5-ProAGG seemed to be impacted by AD in both cerebrospinal fluid and serum. AD-impacted serum tRF5-ProAGG showed a correlation with the AD stage. Putative targets of tRF5-ProAGG in the hippocampus were also predicted by a computational algorithm, with some targets being validated experimentally and one of them being in a negative correlation with tRF5-ProAGG even using a small size of samples. CONCLUSIONS: tRF5-ProAGG showed the potential as an AD biomarker and may play a role in disease progression.


Subject(s)
Alzheimer Disease , Serum , Humans , Serum/metabolism , Alzheimer Disease/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA , Biomarkers
2.
J Neurodev Disord ; 8: 20, 2016.
Article in English | MEDLINE | ID: mdl-27158271

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) has been widely used in studies evaluating the neuropathology of autism spectrum disorder (ASD). Studies are often limited, however, to higher functioning individuals with ASD. MRI studies of individuals with ASD and comorbid intellectual disability (ID) are lacking, due in part to the challenges of acquiring images without the use of sedation. METHODS: Utilizing principles of applied behavior analysis (ABA), we developed a protocol for acquiring structural MRI scans in school-aged children with ASD and intellectual impairment. Board certified behavior analysts worked closely with each child and their parent(s), utilizing behavior change techniques such as pairing, shaping, desensitization, and positive reinforcement, through a series of mock scanner visits to prepare the child for the MRI scan. An objective, quantitative assessment of motion artifact in T1- and diffusion-weighted scans was implemented to ensure that high-quality images were acquired. RESULTS: The sample consisted of 17 children with ASD who are participants in the UC Davis Autism Phenome Project, a longitudinal MRI study aimed at evaluating brain developmental trajectories from early to middle childhood. At the time of their initial scan (2-3.5 years), all 17 children had a diagnosis of ASD and development quotient (DQ) <70. At the time of the current scan (9-13 years), 13 participants continued to have IQs in the range of ID (mean IQ = 54.1, sd = 12.1), and four participants had IQs in the normal range (mean = 102.2, sd = 7.5). The success rate in acquiring T1-weighted images that met quality assurance for acceptable motion artifact was 100 %. The success rate for acquiring high-quality diffusion-weighted images was 94 %. CONCLUSIONS: By using principles of ABA in a research MRI setting, it is feasible to acquire high-quality images in school-aged children with ASD and intellectual impairment without the use of sedation. This is especially critical to ensure that ongoing longitudinal studies of brain development can extend from infancy and early childhood into middle childhood in children with ASD at all levels of functioning, including those with comorbid ID.

SELECTION OF CITATIONS
SEARCH DETAIL
...