Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38999944

ABSTRACT

Bri1-EMS Suppressor 1 (BES1) and Brassinazole Resistant 1 (BZR1) are two key transcription factors in the brassinosteroid (BR) signaling pathway, serving as crucial integrators that connect various signaling pathways in plants. Extensive genetic and biochemical studies have revealed that BES1 and BZR1, along with other protein factors, form a complex interaction network that governs plant growth, development, and stress tolerance. Among the interactome of BES1 and BZR1, several proteins involved in posttranslational modifications play a key role in modifying the stability, abundance, and transcriptional activity of BES1 and BZR1. This review specifically focuses on the functions and regulatory mechanisms of BES1 and BZR1 protein interactors that are not involved in the posttranslational modifications but are crucial in specific growth and development stages and stress responses. By highlighting the significance of the BZR1 and BES1 interactome, this review sheds light on how it optimizes plant growth, development, and stress responses.


Subject(s)
Arabidopsis Proteins , DNA-Binding Proteins , Gene Expression Regulation, Plant , Nuclear Proteins , Plant Development , Stress, Physiological , Plant Development/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Brassinosteroids/metabolism , Signal Transduction , Protein Processing, Post-Translational , Protein Binding
2.
Plant Cell Physiol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896040

ABSTRACT

BRI1-EMS Suppressor 1 (BES1) and Brassinazole resistant 1 (BZR1) are two highly similar master transcription factors of the brassinosteroid (BR) signaling pathway that regulate a variety of plant growth and development processes as well as stress responses. Previous genetic and biochemical analyses have established a complex regulatory network to control the two transcription factors. This network includes coordination with other transcription factors and interactors, multiple post-translational modifications (PTMs), and differential subcellular localizations. In this review, we systematically detail the functions and regulatory mechanisms of various PTMs: phosphorylation/dephosphorylation, ubiquitination/deubiquitination, SUMOylation/deSUMOylation, oxidation/reduction, in regulating the subcellular localization, protein stability, and the transcriptional activity of BES1/BZR1. We also discuss the current knowledge about the BES1/BZR1-interactors mediating the dynamic nucleocytoplasmic shuttling of BES1 and BZR1.

3.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298328

ABSTRACT

Brassinosteroids (BRs) play vital roles in the plant life cycle and synthetic BRs are widely used to increase crop yield and plant stress tolerance. Among them are 24R-methyl-epibrassinolide (24-EBL) and 24S-ethyl-28-homobrassinolide (28-HBL), which differ from brassinolide (BL, the most active BR) at the C-24 position. Although it is well known that 24-EBL is 10% active as BL, there is no consensus on the bioactivity of 28-HBL. A recent outpouring of research interest in 28-HBL on major crops accompanied with a surge of industrial-scale synthesis that produces mixtures of active (22R,23R)-28-HBL and inactive (22S,23S)-28HBL, demands a standardized assay system capable of analyzing different synthetic "28-HBL" products. In this study, the relative bioactivity of 28-HBL to BL and 24-EBL, including its capacity to induce the well-established BR responses at molecular, biochemical, and physiological levels, was systematically analyzed using the whole seedlings of the wild-type and BR-deficient mutant of Arabidopsis thaliana. These multi-level bioassays consistently showed that 28-HBL exhibits a much stronger bioactivity than 24-EBL and is almost as active as BL in rescuing the short hypocotyl phenotype of the dark-grown det2 mutant. These results are consistent with the previously established structure-activity relationship of BRs, proving that this multi-level whole seedling bioassay system could be used to analyze different batches of industrially produced 28-HBL or other BL analogs to ensure the full potential of BRs in modern agriculture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cholestanones , Steroids, Heterocyclic , Brassinosteroids/pharmacology , Steroids, Heterocyclic/pharmacology , Arabidopsis/genetics , Cholestanones/pharmacology , Arabidopsis Proteins/genetics , Plants , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL
...