Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Phys Chem B ; 110(1): 377-82, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16471545

ABSTRACT

The corrosion properties of bulk nanocrystalline ingot iron (BNII) fabricated from conventional polycrystalline ingot iron (CPII) by severe rolling were investigated by means of immersion test, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) tests, and scanning electron microscopy (SEM) observation. These experimental results indicate that BNII possesses excellent corrosion resistance in comparison with CPII in acidic sulfate solution at room temperature. It may mainly result from different surface microstructures between CPII and BNII. However, the corrosion resistance of nanocrystalline materials is usually degraded because of their metastable microstructure nature, and the residual stress in nanocrystalline materials also can result in degradation of corrosion resistance according to the traditional point of view.

3.
J Phys Chem B ; 109(7): 2499-503, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-16851248

ABSTRACT

Bulk nanocrystalline ingot iron (BNII) was produced by the severe rolling technique. The corrosion behaviors of BNII and as-received conventional polycrystalline ingot iron (CPII) in 1 M HCl solution were investigated by potentiodynamic polarization tests, electrochemical impedance spectroscopy measurement, and immersion tests at room temperature. For BNII, the anodic dissolution process is inhibited, but the cathodic process is enhanced. The corrosion current and average corrosion rate of BNII are 0.479 and 0.391 those of CPII, respectively. The resistance of the charge transfer of BNII is about 1.59 times higher than that of CPII. These results indicate that the corrosion resistance of BNII is improved in comparison with CPII.

SELECTION OF CITATIONS
SEARCH DETAIL
...