Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 238(6): 2594-2606, 2023 06.
Article in English | MEDLINE | ID: mdl-36918476

ABSTRACT

Secondary invasions in which nontarget invaders expand following eradication of a target invader commonly occur in habitats with multiple invasive plant species and can prevent recovery of native communities. However, the dynamics and mechanisms of secondary invasion remain unclear. Here, we conducted a common garden experiment to test underlying mechanisms of secondary invasion for 14 nontarget invaders after biological control of Ambrosia artemisiifolia in two consecutive years. We found secondary invasion for all tested nontarget invaders, but secondary invasiveness (change relative to natives) varied with species and time. Specifically, secondary invasiveness depended most strongly on phylogenetic relatedness between the target and nontarget invaders in the first year with closely related nontarget invaders being most invasive. By contrast, secondary invasiveness in the second year was mostly driven by functional traits with taller nontarget invaders or those with higher specific leaf area, or smaller seeds especially invasive. Our study indicates that secondary invasion is likely to occur wherever other invasive plants co-occur with an invasive species targeted for control. Furthermore, the most problematic invaders will initially be species closely related to the target invader but then species with rapid growth and high reproduction are most likely to be more aggressive secondary invaders.


Subject(s)
Ecosystem , Plants , Phylogeny , Introduced Species , Seeds
2.
Ecol Appl ; : e2795, 2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36502292

ABSTRACT

Fluctuating resource availability plays a critical role in determining non-native plant invasions through mediating the competitive balance between non-native and native species. However, the impact of fluctuating resource availability on interactions among non-native species remains largely unknown. This represents a barrier to understanding invasion mechanisms, particularly in habitats that harbor multiple non-native species with different responses to fluctuating resource availability. To examine the responses of non-native plant species to nutrient fluctuations, we compared the growth of each of 12 non-native species found to be common in local natural areas to nutrients supplied at a constant rate or supplied as a single large pulse in a pot experiment. We found that seven species produced more biomass with pulsed nutrients compared to constant nutrients (hereafter "benefitting species"), while the other five species did not differ between nutrient enrichment treatments (hereafter "non-benefitting species"). To investigate how nutrient fluctuations influence the interactions among non-native plant species, we established experimental non-native communities in the field with two benefitting and two non-benefitting non-native species. Compared with constant nutrient supply, the single large pulse of nutrient did not influence community biomass, but strongly increased the biomass and cover of the benefitting species and decreased those of the non-benefitting species. Furthermore, the benefitting species had higher leaf N content and greater plant height when nutrients were supplied as a single large pulse than at a constant rate, whereas the non-benefitting species showed no differences in leaf N content and were shorter when nutrients were supplied as a single large pulse than at a constant rate. Our results add to the growing evidence that the individual responses of non-native species to nutrient fluctuation are species-specific. More importantly, benefitting species were favored by nutrients coming in a pulse, while non-benefitting ones were favored by nutrients coming constantly when they grew together. This suggests that nutrient fluctuations can mediate the competitive balance among non-native plants and may thus determine their invasion success in a community harboring multiple non-native plant species.

3.
Ecol Appl ; : e2805, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36583667

ABSTRACT

Temporal fluctuation in nutrient availability generally promotes the growth of exotic plant species and has been recognized as an important driver of exotic plant invasions. However, little is known about how the impact of fluctuating nutrients on exotic species is dependent on the availability of other resources, although most ecosystems are experiencing dramatic variations in a wide variety of resources due to global change and human disturbance. Here, we explored how water availability mediates the effect of nutrient pulses on the growth of six exotic and six native plant species. We subjected individual plants of exotic and native species to well watered or water stressed conditions. For each level of water availability, we added equivalent amounts of nutrients at a constant rate, as a single large pulse, or in multiple small pulses. Under well watered conditions, nutrient pulses promoted exotic plant growth relative to nutrients supplied constantly, while they had no significant effect on natives. In contrast, under water stressed conditions, water deficiency inhibited the growth of all exotic and native species. More importantly, nutrient pulses did not increase plant growth relative to nutrients supplied constantly and these phenomena were observed for both exotic and native species. Taken together, our study shows that the impact of fluctuating nutrient availability on the growth of exotic plant species strongly depends on the variation of other resources, and that the positive effect of nutrient pulses under well watered conditions disappears under water stressed conditions. Our findings suggest that the variation in multiple resources may have complex feedback on exotic plant invasions and, therefore, it is critical to encompass multiple resources for the evaluation of fluctuating resource availability effects on exotic plant species. This will allow us to project the invasive trajectory of exotic plant species more accurately under future global change and human disturbance.

4.
PLoS One ; 14(7): e0219462, 2019.
Article in English | MEDLINE | ID: mdl-31283795

ABSTRACT

Imazapic is widely used in peanut production, and its residues can cause damage to succeeding crops planted in the following year. The planting area of peanut is large in Henan province. Inceptisol is the main soil type in Henan Province and was used in laboratory experiments that were conducted to investigate imazapic degradation in soil under various environmental conditions. The results indicated that the imazapic degradation rate increased with an increase in temperature, soil pH, and soil moisture, and decreased with organic matter content. The use of biogas slurry as a soil amendment accelerated imazapic degradation. The half-life of imazapic in sterilized soil (364.7 d) was longer than in unsterilized soil (138.6 d), which suggested that there was a significant microbial contribution to imazapic degradation. Imazapic adsorption was also examined and was found to be well described by the Freundlich isotherm. The results indicate that soil has a certain adsorption capacity for imazapic.


Subject(s)
Herbicides/chemistry , Imidazoles/chemistry , Nicotinic Acids/chemistry , Soil/chemistry , Adsorption , Half-Life , Herbicides/metabolism , Hydrogen-Ion Concentration , Imidazoles/metabolism , Nicotinic Acids/metabolism , Soil Microbiology , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...