Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(15): 10262, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38549796

ABSTRACT

[This corrects the article DOI: 10.1039/C5RA08668J.].

2.
J Mater Chem B ; 11(36): 8819, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37671769

ABSTRACT

Expression of concern for 'In vitro and in vivo evaluation of xanthan gum-succinic anhydride hydrogels for the ionic strength-sensitive release of antibacterial agents' by Bailiang Wang et al., J. Mater. Chem. B, 2016, 4, 1853-1861, https://doi.org/10.1039/C5TB02046H.

3.
RSC Adv ; 13(38): 26544, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37676821

ABSTRACT

Expression of concern for 'Synthesis of MA POSS-PMMA as an intraocular lens material with high light transmittance and good cytocompatibility' by Bailiang Wang et al., RSC Adv., 2014, 4, 52959-52966, https://doi.org/10.1039/C4RA08060B.

5.
Chem Commun (Camb) ; 58(46): 6590-6593, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35611701

ABSTRACT

Crystals of a metal-organic framework, UiO-66, are grown on electrospun crosslinked poly-cyclodextrin (poly-CD) fibrous membranes with an ultrahigh coverage, and polyaniline (PANI) is further confined within the MOF pores. The obtained PANI@UiO-66/poly-CD membranes are used as free-standing electrodes towards use in wearable energy-storage devices.


Subject(s)
Cyclodextrins , Metal-Organic Frameworks , Phthalic Acids , Aniline Compounds
9.
Phys Chem Chem Phys ; 24(17): 9855-9865, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35348567

ABSTRACT

Three topologically distinct zirconium-based metal-organic frameworks (Zr-MOFs) constructed from redox-innocent linkers, MOF-808, defective UiO-66, and CAU-24, are synthesized, and the spatially dispersed redox-active manganese sites are post-synthetically immobilized on the hexa-zirconium nodes of these Zr-MOFs. The crystallinity, morphology, porosity, manganese loading, and bulk electrical conductivity of each material are studied. The redox-hopping-based electrochemical reaction between the installed Mn(III) and Mn(IV) occurring within the thin films of these MOFs in aqueous electrolytes is investigated, in the presence of various concentrations of Na2SO4 in the electrolytes. Cyclic voltammetry is used to qualitatively study the redox-hopping process, and chronoamperometry is used to quantify the electrochemically active fractions of manganese sites within the MOF thin film as well as the values of apparent diffusivity for the redox-hopping process. By adjusting the concentration of Na2SO4 in the electrolyte, the rate-determining step for the redox-hopping process can be tuned from ionic transport to electronic transport, and the Mn-decorated MOF-808, which possesses the largest pore size, can achieve the highest value of apparent diffusivity. Findings here shed light on the selection of Zr-MOF as well as the choice of electrolyte concentration for the applications of MOFs in supercapacitors and electrocatalysis relying on such redox-hopping processes in aqueous electrolytes.

10.
ACS Appl Mater Interfaces ; 13(14): 16418-16426, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33818075

ABSTRACT

In this study, nanocrystals of a cerium-based metal-organic framework (Ce-MOF), Ce-MOF-808, are directly grown on the surface of carboxylic acid-functionalized carbon nanotubes (CNTs) by a facile one-step solvothermal synthesis method. Ce-MOF-CNT nanocomposites with various Ce-MOF-to-CNT ratios are synthesized, and their crystallinity, morphology, porosity, and electrical conductivity are examined. The redox-hopping and electrochemical behaviors of the pristine Ce-MOF in aqueous electrolytes are investigated, suggesting that the pristine Ce-MOF is electrochemically active but possesses a limited charge-transport behavior. As a demonstration, all the Ce-MOF, CNT, and nanocomposites are used as active materials for application in aqueous-based supercapacitors. The capacitive performance of the CNT can be significantly boosted with the help of redox-active Ce-MOF-808 nanocrystals.

11.
Int J Nanomedicine ; 12: 127-135, 2017.
Article in English | MEDLINE | ID: mdl-28053528

ABSTRACT

Intraocular lens (IOL) is an efficient implantable device commonly used for treating cataracts. However, bioadhesion of bacteria or residual lens epithelial cells on the IOL surface after surgery causes postoperative complications, such as endophthalmitis or posterior capsular opacification, and leads to loss of sight again. In the present study, zwitterionic polymer brushes were fabricated on the IOL surface via bottom-up grafting procedure. The attenuated total reflection-Fourier transform infrared and contact angle measurements indicated successful surface modification, as well as excellent hydrophilicity. The coating of hydrophilic zwitterionic polymer effectively decreased the bioadhesion of lens epithelial cells or bacteria. In vivo intraocular implantation results showed good in vivo biocompatibility of zwitterionic IOL and its effectiveness against postoperative complications.


Subject(s)
Cataract/therapy , Lens Capsule, Crystalline/drug effects , Lens Implantation, Intraocular/methods , Lenses, Intraocular , Phacoemulsification , Polymers/chemistry , Animals , Bacterial Adhesion , Epithelial Cells , Humans , Hydrophobic and Hydrophilic Interactions , Lens, Crystalline/drug effects , Microscopy, Atomic Force , Postoperative Complications , Prosthesis Design , Rabbits , Surface Properties
12.
Colloids Surf B Biointerfaces ; 141: 483-490, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26896654

ABSTRACT

Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials.


Subject(s)
Anti-Bacterial Agents/chemistry , Delayed-Action Preparations/chemistry , Dimethylpolysiloxanes/chemistry , Gentamicins/chemistry , Triclosan/chemistry , Animals , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Cell Survival/drug effects , Cells, Cultured , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Liberation , Epithelial Cells/drug effects , Gentamicins/pharmacokinetics , Gentamicins/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Lens, Crystalline/cytology , Membranes, Artificial , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Rabbits , Spectrophotometry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Surface Properties , Triclosan/pharmacokinetics , Triclosan/pharmacology
13.
J Mater Chem B ; 4(10): 1853-1861, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-32263062

ABSTRACT

In this work, we report a new approach to prepare high gel performance hydrogels which are used as ionic strength-sensitive drug release systems. Succinic anhydride (SA)-modified xanthan (XG-SA) derivatives were prepared and confirmed by Fourier transform-infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Rheological measurements showed that the storage moduli (G') and loss moduli (G'') of XG-SA were much higher than native XG suggesting a higher stability of the hydrogels. XG-SA could form stable hydrogels when the content of a dry gel was 1.4 wt%. Drug release studies showed the ionic strength-sensitive and sustained release of gentamicin (GS) for 9 days under aqueous physiological conditions. Biofilm inhibition assay revealed that the XG-SA/GS hydrogels were sufficient to inhibit biofilm formation. The Kirby-Bauer method showed that there was a zone of inhibition at around 8.2 mm indicating the excellent bactericidal function of the hydrogels. Cytocompatibility assessment against human lens epithelial cells revealed that the hydrogels supported cell adhesion, proliferation and migration when the loading dosage of GS was 1 mg g-1. XG-SA/GS hydrogels were compared to native XG-SA in the rabbit subcutaneous S. aureus infection model. XG-SA/GS hydrogels yielded a significantly lower degree of infection than XG-SA hydrogels at day 7. In this way, XG-SA hydrogels are promising drug delivery materials for antibacterial applications.

14.
J Mater Chem B ; 3(18): 3695-3703, 2015 May 14.
Article in English | MEDLINE | ID: mdl-32262844

ABSTRACT

Posterior capsule opacification (PCO) is a significant complication of intraocular lens (IOL) implantation in cataract surgery, in which the adhesion and proliferation of lens epithelial cells (LECs) on the IOL surface play important roles. In the present study, a highly swollen hyaluronic acid (HA)/chitosan (CHI) polyelectrolyte multilayer was fabricated on the IOL surface via the layer by layer technique. Quartz crystal microbalance with dissipation (QCM-D) results not only show the successful construction of the multilayer, but also indicate its hydrogel-like swollen property. The water content of the (HA/CHI)5 multilayer is around 400%, as obtained by thermogravimetry (TG) analysis. Compared with a pristine IOL, the polysaccharide multilayer modification does not influence its optical property, whereas the adhesion and proliferation of LECs are greatly inhibited. In vivo ocular implantation results show that such a polysaccharide multilayer modification presents good in vivo biocompatibility, and has positive effects on reducing PCO development.

15.
Biodegradation ; 25(6): 825-33, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25091324

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are harmful persistent organic pollutants, while the high-molecular-weight (HMW) PAHs are even more detrimental to the environment and human health. However, microbial anaerobic degradation of HMW PAHs has rarely been reported. One facultative anaerobe Pseudomonas sp. JP1 was isolated from Shantou Bay, Shantou, China, which could degrade a variety of HMW PAHs. After 40 days cultivation with strain JP1, anaerobic biodegradation rate of benzo[a]pyrene (BaP), fluoranthene, and phenanthrene was 30, 47, and 5 %, respectively. Consumption of nitrate as the electron acceptor was confirmed by N-(1-naphthyl) ethylenediamine spectrophotometry. Supplementation of sodium sulfite, maltose, or glycine, and in a salinity of 0-20 ‰ significantly stimulated anaerobic degradation of BaP. Lastly, the anaerobic degradation metabolites of BaP by strain JP1 were investigated using GC/MS, and the degradation pathway was proposed. This study is helpful for further studies on the mechanism of anaerobic biodegradation of PAHs.


Subject(s)
Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons/metabolism , Pseudomonas/metabolism , Bacteria, Anaerobic/metabolism , Molecular Weight , Polycyclic Aromatic Hydrocarbons/chemistry
16.
J Colloid Interface Sci ; 431: 1-7, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24972346

ABSTRACT

The development of posterior capsule opacification (PCO) after intraocular lenses (IOL) implantation for dealing with cataract is mainly due to the severe loss of the human lens epithelial cells (HLECs) during surgery contact. A novel poly (hedral oligomeric silsesquioxane-co-methyl methacrylate) copolymer (allyl POSS-PMMA) was synthesized by free radical polymerization method to promote the adhesion of HLECs. FT-IR and (1)H NMR measurements indicated the existence of POSS cage in the product, which demonstrated the successful synthesis of allyl POSS-PMMA copolymer. Effect of allyl POSS in the hybrids on crystal structure, surface wettability and morphology, optical transmission, thermodynamic properties and cytocompatibility was investigated in detail. X-ray diffraction peaks at 2θ∼11° and 12° indicated that POSS molecules had aggregated and crystallized. Thermogravimetric analysis-differential scanning calorimeter and optical transmission measurements confirmed that the allyl POSS-PMMA copolymer had high glass transition temperatures (more than 100°C) and good transparency. The hydrophilicity and morphology of PMMA and copolymers surfaces were characterized by static water contact angle and atomic force microscopy. The results revealed that the surface of the allyl POSS-PMMA copolymer displayed higher hydrophobicity and higher roughness than that of pure PMMA. The surface biocompatibility was evaluated by morphology and activity measurement with HLECs in vitro. The results verified that the surface of allyl POSS-PMMA copolymer films had more HLECs adhesion and better spreading morphology than that of PMMA film.


Subject(s)
Lenses, Intraocular , Materials Testing , Membranes, Artificial , Polymethyl Methacrylate , Cell Line , Humans , Hydrophobic and Hydrophilic Interactions , Polymethyl Methacrylate/chemical synthesis , Polymethyl Methacrylate/chemistry
17.
J Bacteriol ; 194(13): 3546, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22689235

ABSTRACT

The genus Rhodococcus is known for its ability to degrade various xenobiotic compounds. Rhodococcus sp. strain P14 isolated from crude oil-contaminated sediments can degrade mineral oil and polycyclic aromatic hydrocarbons (PAHs). The draft genome sequence of Rhodococcus sp. P14 was obtained using Solexa technology, which provided an invaluable genetic background for further investigation of the ability of P14 to degrade xenobiotic compounds.


Subject(s)
Biodegradation, Environmental , Genome, Bacterial , Polycyclic Aromatic Hydrocarbons/metabolism , Rhodococcus/genetics , Sequence Analysis, DNA , Geologic Sediments/microbiology , Molecular Sequence Data , Molecular Weight , Petroleum , Polycyclic Aromatic Hydrocarbons/chemistry , Rhodococcus/classification , Rhodococcus/isolation & purification , Rhodococcus/metabolism , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...