Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1379784, 2024.
Article in English | MEDLINE | ID: mdl-38812971

ABSTRACT

Solanum pinnatisectum exhibits strong resistance to late blight caused by Phytophthora infestans but only an incomplete genome assembly based on short Illumina reads has been published. In this study, we generated the first chromosome-level draft genome for the wild-type potato species S. pinnatisectum in China using Oxford Nanopore technology sequencing and Hi-C technology. The high-quality assembled genome size is 664 Mb with a scaffold N50 value of 49.17 Mb, of which 65.87% was occupied by repetitive sequences, and predominant long terminal repeats (42.51% of the entire genome). The genome of S. pinnatisectum was predicted to contain 34,245 genes, of which 99.34% were functionally annotated. Moreover, 303 NBS-coding disease resistance (R) genes were predicted in the S. pinnatisectum genome to investigate the potential mechanisms of resistance to late blight disease. The high-quality chromosome-level reference genome of S. pinnatisectum is expected to provide potential valuable resources for intensively and effectively investigating molecular breeding and genetic research in the future.

2.
Plant Direct ; 7(11): e539, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37942234

ABSTRACT

Annexins exist widely in plants as multigene families and play critical roles in stress responses and a range of cellular processes. This study provides a comprehensive account of the cloning and functional characterization of the rice annexin gene OsAnn5. The findings reveal that a cold stress treatment at the seedling stage of rice induced OsAnn5 expression. GUS staining assay indicated that the expression of OsAnn5 was non tissue-specific and was detected in almost all rice tissues. Subcellular localization indicated that OsAnn5-GFP (green fluorescent protein) signals were found in the endoplasmic reticulum apparatus. Compared with wild type rice, knocking out OsAnn5 using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins) mediated genome editing resulted in sensitivity to cold treatments. These results indicate that OsAnn5 is involved in cold stress tolerance at the seedling stage.

3.
Front Genet ; 13: 1029879, 2022.
Article in English | MEDLINE | ID: mdl-36457753

ABSTRACT

Dongxiang wild rice (DXWR, Oryza rufipogon Griff.) belongs to common wild rice O. rufipogon, which is the well-known ancestral progenitor of cultivated rice, possessing important gene resources for rice breeding. However, the distribution of DXWR is decreasing rapidly, and no reference genome has been published to date. In this study, we constructed a chromosome-level reference genome of DXWR by Oxford Nanopore Technology (ONT) and High-through chromosome conformation capture (Hi-C). A total of 58.41 Gb clean data from ONT were de novo assembled into 231 contigs with the total length of 413.46 Mb and N50 length of 5.18 Mb. These contigs were clustered and ordered into 12 pseudo-chromosomes covering about 97.39% assembly with Hi-C data, with a scaffold N50 length of 33.47 Mb. Moreover, 54.10% of the genome sequences were identified as repeat sequences. 33,862 (94.21%) genes were functionally annotated from a total of predicted 35,942 protein-coding sequences. Compared with other species of Oryza genus, the genes related to disease and cold resistance in DXWR had undergone a large-scale expansion, which may be one of the reasons for the stronger disease resistance and cold resistance of DXWR. Comparative transcriptome analysis also determined a list of differentially expressed genes under normal and cold treatment, which supported DXWR as a cold-tolerant variety. The collinearity between DXWR and cultivated rice was high, but there were still some significant structural variations, including a specific inversion on chromosome 11, which may be related to the differentiation of DXWR. The high-quality chromosome-level reference genome of DXWR assembled in this study will become a valuable resource for rice molecular breeding and genetic research in the future.

4.
J Cell Mol Med ; 25(17): 8329-8337, 2021 09.
Article in English | MEDLINE | ID: mdl-34318604

ABSTRACT

Previous studies have shown that dexamethasone (Dex) reduces the levels of anti-nuclear (ANA) and anti-dsDNA antibodies in MRL/lpr mice (a mouse model of SLE). However, the effect of Dex on T follicular helper (Tfh) cells is less documented. Here, using the MRL/lpr mouse model, we investigated the influence of Dex on Tfh cells and potential underlying mechanisms. The data showed that the proportion of Tfh cells, identified as CD4+ CXCR5+ ICOS+ , CD4+ CXCR5+ PD-1+ or CD4+ BCL-6+ cells, markedly decreased after treatment with the Dex, in both Balb/c mice and MRL/lpr mice. Dex significantly inhibited IL-21 expression at both the mRNA and the protein levels. Dex also significantly reduced the proportion of germinal centre B cells and decreased serum IgG, IgG2a/b and IgA levels. Moreover, a positive correlation between the proportion of Tfh cells (CD4+ CXCR5+ ICOS+ , CD4+ CXCR5+ PD-1+ or CD4+ BCL-6+ ) and autoantibodies was observed. Dex significantly increased the Prdm1 and Stat5b mRNA expression and decreased the Bcl-6 and c-Maf mRNA expression of CD4+ T cells. In brief, Dex inhibited the Tfh development, which relies on many other transcription factors in addition to Bcl-6. Our data indicate that Dex can be used as a Tfh cell inhibitor in SLE.


Subject(s)
Anti-Inflammatory Agents/pharmacology , B-Lymphocytes/drug effects , Dexamethasone/pharmacology , Lupus Erythematosus, Systemic/drug therapy , T Follicular Helper Cells/drug effects , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Female , Lupus Erythematosus, Systemic/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred MRL lpr , T Follicular Helper Cells/cytology , T Follicular Helper Cells/immunology
5.
Front Immunol ; 11: 701, 2020.
Article in English | MEDLINE | ID: mdl-32411135

ABSTRACT

Follicular helper T (Tfh) cells regulate high-affinity antibody production. Some findings have indicated that Tfh cells could be differentiated into memory cells. Here we have investigated the effects of IFN-α, as an adjuvant, on the generation of memory Tfh cell and memory B cell responses. The data showed that adenoviral vectors expressing: (i) foot-and-mouth disease virus (FMDV) VP1 proteins and porcine IFN-α, or (ii) porcine IFN-α alone, potently enhanced the generation of memory Tfh cells, especially the CCR7 lo memory Tfh subset. Upon rechallenge with FMD recombinant adenoviral vaccines, IFN-α enhances Tfh cells activity, rapidly upregulating their signature Bcl-6, CXCR5, and IL-21 markers. The results suggest that IFN-α enhances the levels of the transcription factor Bcl-6 within Tfh cells, potentially by regulating STAT1. Additionally, IFN-α substantially increased the number of IgG1+ and CD86+ memory B cells, which are responsible for inducing the rapid effector functions of memory Tfh cells after vaccine reactivation, establishing the close relationship between memory B cell and memory Tfh cell subsets. In brief, IFN-α enhances the potency of FMD recombinant adenoviral vaccines to induce memory Tfh and memory B cell responses, thus elevating serum antibody titers. IFN-α administration therefore represents an attractive strategy for enhancing responses to vaccination.


Subject(s)
Adenovirus Vaccines/administration & dosage , Adjuvants, Immunologic/pharmacology , B-Lymphocytes/immunology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/immunology , Foot-and-Mouth Disease/prevention & control , Immunologic Memory/drug effects , Interferon-alpha/pharmacology , T Follicular Helper Cells/immunology , Vaccination/methods , Adenoviridae/genetics , Adenovirus Vaccines/immunology , Animals , Capsid Proteins/immunology , Female , Foot-and-Mouth Disease/virology , Genetic Vectors/administration & dosage , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
6.
Int Immunopharmacol ; 80: 106239, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32007709

ABSTRACT

Previous research has recently indicated that TLR7 is able to induce CD4+T cell anergy, which is the opposite of the role it plays in innate immune cells. Therefore, TLR7 ligands may be used as a manner in which to induce CD4+T cells "tolerance" in autoimmune diseases. T follicular helper (Tfh) cells were demonstrated to be a subset of CD4+T cells that help B cells produce antibodies. The abnormal activity of Tfh cells, though, is their function as a primary pathogenic factor in systemic lupus erythematosus (SLE). However, the role of TLR7 in Tfh cells is not clear. Our study was aimed at determining the influence of TLR7 on Tfh cells in a murine model of SLE (MRL/lpr mice). We were surprised to find that the frequency of Tfh cells and germinal center (GC) B cells was significantly reduced after treatment with the TLR7 agonist imiquimod. Imiquimod also significantly reduced the expression of inducible costimulatory molecule (ICOS) and programmed death 1(PD-1) in Tfh cells and decreased IL-21 secretion. Moreover, imiquimod significantly reduced the mRNA expression of several transcription factors, including Bcl-6, c-Maf, Batf3, Nfatc2 and Stat3, and enhanced the expression of Prdm1 and Stat5b in CD4+T cells. Imiquimod also ameliorated the progression of SLE in MRL/lpr mice by inhibiting anti-dsDNA antibodies and antinuclear antibody (ANA) secretion in the serum. Our findings indicated that TLR7 inhibited the development of Tfh cells both in vivo and ex vivo, which depended on many transcription factors aside from Bcl-6. Our results demonstrated that a TLR7 agonist has the potential to be used to inhibit Tfh cell responses during SLE.


Subject(s)
Cell Differentiation/drug effects , Imiquimod/pharmacology , Lupus Erythematosus, Systemic/drug therapy , Membrane Glycoproteins/agonists , T-Lymphocytes, Helper-Inducer/drug effects , Toll-Like Receptor 7/agonists , Animals , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Antinuclear/metabolism , Autoimmunity/drug effects , Cell Differentiation/immunology , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Imiquimod/therapeutic use , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred MRL lpr , Positive Regulatory Domain I-Binding Factor 1/metabolism , Proto-Oncogene Proteins c-bcl-6/metabolism , STAT Transcription Factors/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Toll-Like Receptor 7/metabolism
7.
J Nanosci Nanotechnol ; 13(3): 2045-50, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23755644

ABSTRACT

Immature embryos from immature seeds of rice (Oryza sativa L.) were transformed by biolistic bombardment with the plasmid carrying the coding region of the hygromycin phosphotransferase gene under the control of the 5' region of the cauliflower mosaic virus 35S promoter and the synthetic green fluorescence protein gene (sgfp) under the control of the maize ubiquitine promoter. Southern blot analysis confirmed the stable integration of hpt and sgfp genes in transformants. Subsequently leaves from regenerated plants were resistant to hygromycin, and microscopic observation of the green fluorescence and immunoblotting analysis revealed that green fluorescence protein was not only detected in the leaf and pollen of primary transformants but also in mature seeds. The results bear out the importance of the suitability of GFP as an in vivo marker to follow the processes of selection of somatic hybrid embryos and plants.


Subject(s)
Green Fluorescent Proteins/biosynthesis , Plants, Genetically Modified/embryology , Seeds/metabolism , Base Sequence , Biolistics , Blotting, Southern , Blotting, Western , DNA Primers , Microscopy, Fluorescence , Polymerase Chain Reaction , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...