Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(17): 22131-22138, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38632927

ABSTRACT

Due to the increasing complexity in miniaturization of electronic devices, reconfigurable field-effect transistors (RFETs) have emerged as a solution. Although the foundational concepts of RFETs have matured over two decades, ongoing breakthroughs are needed to address challenges such as improving the device performance as well as achieving balanced symmetry between n-type and p-type transport modes with long-term stability. Herein, we present a nonvolatile WSe2-based RFET that utilizes photoassisted interfacial charge trapping at the h-BN and SiO2 interface. Unlike typical RFETs with two gate electrodes, our RFETs achieved polarity control with a single operating gate activated exclusively under white-light exposure. The threshold voltage was tunable, ranging from 27.4 (-31.6 V) to 0.9 (+19.5 V), allowing selective activation of n-type (p-type) operation at VGS = 0 V. Additionally, our WSe2-based RFETs show superior repeatability and long-term stability. Leveraging these advantages, various reconfigurable logic circuits were successfully demonstrated, including complementary inverters and switch circuits as well as pull-up and pull-down circuits, highlighting the potential of WSe2 FETs for future advancements of integrated circuits.

2.
ACS Nano ; 18(17): 11193-11199, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626400

ABSTRACT

A single photodetector with tunable detection wavelengths and polarization sensitivity can potentially be harnessed for diverse optical applications ranging from imaging and sensing to telecommunications. Such a device will require the combination of multiple material systems with different structures, band gaps, and photoelectrical responses, which is extremely difficult to engineer using traditional epitaxial films. Here, we develop a multifunctional and high-performance photosensor using all van der Waals materials. The device features a gate-tunable spectral response that is switchable between near-infrared/visible and short-/midwave infrared, as well as broad-band operation, at room temperature. The linear polarization sensitivity in the telecommunication O-band can also be directly modulated between horizontal, vertical, and nonpolarizing modes. These effects originate from the balance of photocurrent generation in two of the active layers that can be manipulated by an electric field. The photodetector features high detectivity (>109 cmHz1/2W-1) together with fast operation speed (∼1 MHz) and can be further exploited for dual visible and infrared imaging.

3.
ACS Appl Mater Interfaces ; 16(8): 10496-10507, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38377380

ABSTRACT

With the flexibilization tendency of traditional electronics, developing sensing devices for the low-temperature field is demanding. Here, we fabricated a flexible copper-based thermistor by a laser direct writing process with Cu ion precursors. The copper-based thermistor performs with excellent temperature sensing ability and high stability under different environments. We discussed the effect of laser power on the temperature sensitivity of the copper-based thermistor, explained the sensing mechanism of the as-written copper-based films, and fabricated a temperature sensor array for realizing temperature management in a specific zone. All of the investigations have demonstrated that such copper-based thermistors can be used as candidate devices for low-temperature sensing fields.

4.
Nanoscale Horiz ; 9(2): 285-294, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38063807

ABSTRACT

Schottky junctions are commonly used for fabricating heterojunction-based 2D transition metal dichalcogenide (TMD) photodetectors, characteristically offering a wide detection range, high sensitivity and fast response. However, these devices often suffer from reduced detectivity due to the high dark current, making it challenging to discover a simple and efficient universal way to improve the photoelectric performances. Here, we demonstrate a novel approach for integrating ZnO nanowire gates into a MoS2-Au Schottky junction to improve the photoelectric performances of photodetectors by locally controlling the Schottky barrier. This strategy remarkably reduces the dark current level of the device without affecting its photocurrent and the Schottky detectivity can be modified to a maximum detectivity of 1.4 × 1013 Jones with -20 V NG bias. This work provides potential possibilities for tuning the band structure of other materials and optimizing the performance of heterojunction photodetectors.

5.
Mater Horiz ; 10(2): 524-535, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36426652

ABSTRACT

The integration of 2D materials with other dimensional materials opens up rich possibilities for both fundamental physics and exotic nanodevices. However, current mixed-dimensional heterostructures often suffer from interfacial contact issues and environment-induced degradation, which severely limits their performance in electronics/optoelectronics. Herein, we demonstrate a novel BN-encapsulated CuO/MoS2 2D-1D van der Waals heterostructure photodetector with an ultrahigh photoresponsivity which is 10-fold higher than its previous 2D-1D counterparts. The interfacial contact state and photodetection capabilities of 2D-1D heterojunctions are significantly improved via femtosecond laser irradiation induced MoS2 wrapping and contamination removal. These h-BN protected devices show highly sensitive, gate-tunable and robust photoelectronic properties. By controlling the gate and bias voltages, the device can achieve a photoresponsivity as high as 2500 A W-1 in the forward bias mode, or achieve a high detectivity of 6.5 × 1011 Jones and a typical rise time of 2.5 ms at reverse bias. Moreover, h-BN encapsulation effectively protects the mixed-dimensional photodetector from electrical depletion by gas molecules such as O2 and H2O during fs laser treatment or the operation process, thus greatly improving the stability and service life in harsh environments. This work provides a new way for the further development of high performance, low cost, and robust mixed-dimensional heterostructure photodetectors by femtosecond laser contact engineering.

6.
Sci Rep ; 12(1): 9663, 2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35690650

ABSTRACT

The realization of a semiconductor near-unity absorber in the infrared will provide new capabilities to transform applications in sensing, health, imaging, and quantum information science, especially where portability is required. Typically, commercially available portable single-photon detectors in the infrared are made from bulk semiconductors and have efficiencies well below unity. Here, we design a novel semiconductor nanowire metamaterial, and show that by carefully arranging an InGaAs nanowire array and by controlling their shape, we demonstrate near-unity absorption efficiency at room temperature. We experimentally show an average measured efficiency of 93% (simulated average efficiency of 97%) over an unprecedented wavelength range from 900 to 1500 nm. We further show that the near-unity absorption results from the collective response of the nanowire metamaterial, originating from both coupling into leaky resonant waveguide and transverse modes. These coupling mechanisms cause light to be absorbed directly from the top and indirectly as light scatters from one nanowire to neighbouring ones. This work leads to the possible development of a new generation of quantum detectors with unprecedented broadband near-unity absorption in the infrared, while operating near room temperature for a wider range of applications.

7.
Nano Lett ; 22(8): 3425-3432, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35404604

ABSTRACT

The ability to perform broadband optical spectroscopy with subdiffraction-limit resolution is highly sought-after for a wide range of critical applications. However, sophisticated near-field techniques are currently required to achieve this goal. We bypass this challenge by demonstrating an extremely broadband photodetector based on a two-dimensional (2D) van der Waals heterostructure that is sensitive to light across over a decade in energy from the mid-infrared (MIR) to deep-ultraviolet (DUV) at room temperature. The devices feature high detectivity (>109 cm Hz1/2 W-1) together with high bandwidth (2.1 MHz). The active area can be further miniaturized to submicron dimensions, far below the diffraction limit for the longest detectable wavelength of 4.1 µm, enabling such devices for facile measurements of local optical properties on atomic-layer-thickness samples placed in close proximity. This work can lead to the development of low-cost and high-throughput photosensors for hyperspectral imaging at the nanoscale.

8.
ACS Appl Mater Interfaces ; 13(45): 54246-54257, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34726368

ABSTRACT

2D materials exhibit intriguing electrical and optical properties, making them promising candidates for next-generation nanoelectronic devices. However, the high contact resistance of 2D materials to electrode material often limits the ultimate performance and potential of 2D materials and devices. In this work, we demonstrate a localized femtosecond (fs) laser irradiation process to substantially minimize the resistance of MoS2-metal contacts. A reduction of the contact resistance exceeding three orders of magnitude is achieved for mechanically exfoliated MoS2, which remarkably improves the overall FET performance. The underlying mechanisms of resistance reduction are the removal of organic contamination induced by the transfer process, as well as the lowering of Schottky barrier resistance (RSB) attributed to interface Fermi level pinning (FLP) by Au diffusion, and the lowering of interlayer resistance (Rint) due to interlayer coupling enhancement by Au intercalation under fs laser irradiation. By taking advantage of the improved MoS2-metal contact behavior, a high-performance MoS2 photodetector was developed with a photoresponsivity of 68.8 A W-1 at quite a low Vds of 0.5 V, which is ∼80 times higher than the pristine multilayer photodetector. This contamination-free, site-specific, and universal photonic fabrication technique provides an effective tool for the integration of complex 2D devices, and the mechanism of MoS2-metal interface modification reveals a new pathway to engineer the 2D material-metal interface.

9.
ACS Appl Mater Interfaces ; 13(29): 34266-34273, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34255972

ABSTRACT

We report the development of low-cost triboelectric nanogenerators (TENGs) based on polypropylene (PP) fabrics formulated via an inexpensive melt-blowing process with an output voltage as high as 50 V. By disinfection methods such as exposure to steam, ethanol, and dry heat at 75 °C, the commercial medical masks and N95 filtering facepiece respirators (FFRs) can be reused to fabricate PP fiber based TENGs, which provide a novel regime for energy-harvesting devices based on reusable materials. As a power source, the output of one TENG can drive 15 serially connected light-emitting diodes (LEDs) or a commercial electric calculator. PP fabric TENGs can also work as self-powered sensors for the high-sensitivity detection of mechanical impact. We provide examples where the TENG is used to detect biomechanical motion such as that associated with the extension of an elbow, the touch of a finger, the impact of footsteps, and the bending of a knee without an external power supply. Most importantly, these PP fabrics for TENGs can be obtained from decontaminated medical masks that are generated as tremendous wastes every day, which provide a great potential as sustainable energy. These properties suggest that PP fabric based TENGs are promising for harvesting energy from biological systems and that they may facilitate the large-scale production of a new range of inexpensive self-powered multifunctional wearable sensors for applications in healthcare, security, and information networks.

10.
ACS Appl Mater Interfaces ; 13(23): 27169-27178, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34081434

ABSTRACT

Harvesting energy from ambient moisture and natural water sources is currently of great interest due to the need for standalone self-powered nano/micro-systems. In this work, we report on the development of a cost-effective nanogenerator based on a carbon paper-Al2O3 nanoparticle layer-carbon paper (CAC) sandwich structure, where the 3D Al2O3 layer is deposited via vacuum filtration. This type of device can produce an open-circuit voltage (UOC) of up to 4 V and a short-circuit current (ISC) of ∼18 µA with only an 8 µL water droplet applied. To our knowledge, this is the highest voltage yet reported from a single moisture/water-induced electricity nanogenerator using solid oxides and carbon-based materials. A remarkable output power of 14.8 µW can be reached with an optimized resistive load. An LED with a working voltage of 3-3.2 V can operate for a short time with the power from a single CAC device exposed to one 8 µL water droplet. Furthermore, a CAC generator adsorbing as little as 2 µL water droplets every 3 min can also give a UOC of 3.63 V. We show that CAC devices provide a robust electrical output over more than 200 wet-dry cycles without any deterioration in performance. These units demonstrate much promise as cost-effective electricity generators for harvesting energy from natural sources like rainwater, tap water, snow runoff, and dew. The response time of CAC devices can be as fast as 10-100 ms, making them ideal for applications as self-powered water detectors. The generation of power in this device arises from the streaming current. To assist in the optimization of these devices, we have analyzed how their response is related to such factors as layer thickness, time interval between application of water droplets, and the volume of each water droplet.

11.
Adv Mater ; 32(52): e2003722, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33185944

ABSTRACT

The exploration of the utilization of sustainable, green energy represents one way in which it is possible to ameliorate the growing threat of the global environmental issues and the crisis in energy. Moisture, which is ubiquitous on Earth, contains a vast reservoir of low-grade energy in the form of gaseous water molecules and water droplets. It has now been found that a number of functionalized materials can generate electricity directly from their interaction with moisture. This suggests that electrical energy can be harvested from atmospheric moisture and enables the creation of a new range of self-powered devices. Herein, the basic mechanisms of moisture-induced electricity generation are discussed, the recent advances in materials (including carbon nanoparticles, graphene materials, metal oxide nanomaterials, biofibers, and polymers) for harvesting electrical energy from moisture are summarized, and some strategies for improving energy conversion efficiency and output power in these devices are provided. The potential applications of moisture electrical generators in self-powered electronics, healthcare, security, information storage, artificial intelligence, and Internet-of-things are also discussed. Some remaining challenges are also considered, together with a number of suggestions for potential new developments of this emerging technology.

12.
ACS Appl Mater Interfaces ; 12(21): 24289-24297, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32364363

ABSTRACT

This study reports the concept of a water/moisture-induced hygroelectric generator based on the direct contact between magnesium (Mg) alloy and oxidized carbon nanofibers (CNFs). This device generates an open-circuit voltage up to 2.65 V within only 10 ms when the unit is placed in contact with liquid water, which is higher than the reduction potential of magnesium. The average peak short-circuit current density is ∼6 mA/cm2, which is among the highest values yet reported for water-induced electricity generators. Our results indicate that galvanic corrosion occurs at the interface between the CNF and Mg electrode, but the device can still generate electricity because of the high contact resistance caused by the work function difference between Mg and CNF and the surface oxidation. The oxidized CNF is shown to absorb water/moisture and get reduced, leading to a capacitive discharging effect to provide enhanced signal amplitude and sensitivity. These devices are found to be highly sensitive to small quantities of water, and their high output voltage and current make them useful for the detection of water vapor in the human breath as well as changes in ambient humidity. The Mg/CNF systems thus provide a new technology for use in the fabrication of self-powered water/moisture sensors and the development of portable electric power generators.

13.
Nanotechnology ; 31(12): 125201, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31801120

ABSTRACT

Nonassociative learning is a biologically essential and evolutionarily adaptive behavior in organisms. The bionic simulation of nonassociative learning based on electronic devices is essential to the neuromorphic computing. In this work, nonassociative learning is mimicked by a ZnO nanowire memristor without any other peripheral control circuit. The memristor demonstrates habituation and sensitization behaviors at the electrical and optical stimuli. Typical network-level parametric characteristics of habituation in neuroscience are realized in the memristor. When the heterogeneous stimuli are applied coincidentally, sensitization pulse could be identified by the exceptional response current. The results show that the natural selection rules could be simulated by the current single memristor. A possible mechanism based on the trapping states and adsorption of oxygen at the interface of Au/ZnO is proposed. The implementation of nonassociative learning in a single memristor device paves the way for building neuromorphic systems by simple electronic devices.

14.
ACS Appl Mater Interfaces ; 11(18): 16972-16980, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30945537

ABSTRACT

Decreasing the interconnecting temperature is essential for 3D and heterogeneous device integrations, which play indispensable roles in the coming era of "more than Moore". Although nanomaterials exhibit a decreased onset temperature for interconnecting, such an effect is always deeply impaired because of organic additives in practical integrations. Meanwhile, current organic-free integration strategies suffer from roughness and contaminants at the bonding interface. Herein, a novel bilayer nanoarchitecture simultaneously overcomes the drawbacks of organics and is highly tolerant to interfacial morphology, which exhibits universal applicability for device-level integrations at even room temperature, with the overall performance outperforming most counterparts reported. This nanoarchitecture features a loose nanoparticle layer with unprecedented deformability for interfacial gap-filling, and a compact one providing firm bonding with the component surface. The two distinct nanoparticle layers cooperatively enhance the interconnecting performance by 73-357%. Apart from the absence of organics, the internal abundant lattice disorders profoundly accelerate the interconnecting process, which is supported by experiments and molecular dynamics simulation. This nanoarchitecture is successfully demonstrated in diversified applications including paper-based light-emitting diodes, Cu-Cu micro-bonding, and SiC power modules. The strategy proposed here can open a new paradigm for device integrations and provide a fresh understanding on interconnecting mechanisms.

15.
Nanotechnology ; 30(32): 325503, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31013482

ABSTRACT

Smart breath monitor devices with high stretchability, fast response/recovery times and self-powered characteristic are essential in the wearable medical and life science applications. In this work, we report on the development of a versatile high-performance humidity sensor based on TiO2 nanowire networks for self-powered sensing application of human breath monitoring. These sensors, with typical response times of ∼3.6 s and recovery times of ∼14 s, exhibit high sensitivity to water vapor and can yield an output voltage that is directly proportional to the humidity level of ambient environment. The structure of nanowire networks is highly flexible and maintains the output voltage even after 10 000 times bending. By combining this type of sensor with a commercial signal transmission and processing system, it shows the good basis for real-time/remote-controlled monitoring and analysis of human breath under a variety of respiratory conditions. Our results suggest a new class of humidity sensing for self-powered biomedical devices and open to new technologies in energy, electronics, and sensor applications.

16.
ACS Appl Mater Interfaces ; 11(15): 14249-14255, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30907574

ABSTRACT

Most advanced humidity sensors are powered by batteries that need regular charging and replacement, causing environmental problems and complicated management issues. This paradigm has been overcome through the development of new technology based on the concept of simple, self-powered, rapid-response, flexible humidity sensors enabled by the properties of densely packed titanium dioxide (TiO2) nanowire networks. These sensors eliminate the need for an external power source and produce an output voltage that can be readily related to ambient humidity level over a wide range of ambient conditions. They are characterized by rapid response and relaxation times (typically 4.5 and 2.8 s, respectively). These units are mechanically flexible and maintain a constant voltage output after 10 000 bending cycles. This new type of humidity sensor is easily attached to a human finger for use in the monitoring of ambient humidity level in the environment around human skin, near wet objects, or in the presence of moist materials. The unique properties of this new self-powered wearable humidity sensor technology open up a variety of new applications, including the development of electronic skin, personal healthcare products, and smart tracking in the future Internet-of-things.

17.
Nanomicro Lett ; 12(1): 5, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-34138063

ABSTRACT

With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 µA when 6 µL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 µs, on exposure of the generator to 6 µL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.

18.
Appl Opt ; 57(9): 2080-2086, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29603997

ABSTRACT

Understanding the impact dynamics and spreading of molten nanosized droplets on a solid surface is a crucial step towards the design and control of nano-fabrication in many novel applications of nanotechnology. In this context, molecular dynamic (MD) simulations have been conducted to compute temperature and dynamic contact angles of nano-droplets during impact. The evolution of the morphology of a molten metallic nano-droplet impacting on a substrate has been studied using a combination of experimental and simulation techniques. Femtosecond lasers have been used to transfer nanosized gold droplets. Droplet morphology calculated in MD simulations is found to be in good agreement with that seen in scanning electron microscopy (SEM) images. It is found that the spreading of nanoscale molten gold droplets upon impact is enhanced by increasing the droplet impact energy. As observed in experimental data, MD simulation results show that a high droplet-substrate heat transfer rate together with increased wettability of the substrate facilitates spreading and results in a thinner metal deposit after solidification.

19.
Nanoscale ; 10(13): 6069-6079, 2018 Mar 29.
Article in English | MEDLINE | ID: mdl-29546896

ABSTRACT

Neuromorphic computational systems that emulate biological synapses in the human brain are fundamental in the development of artificial intelligence protocols beyond the standard von Neumann architecture. Such systems require new types of building blocks, such as memristors that access a quasi-continuous and wide range of conductive states, which is still an obstacle for the realization of high-efficiency and large-capacity learning in neuromorphoric simulation. Here, we introduce hydrogen and sodium titanate nanobelts, the intermediate products of hydrothermal synthesis of TiO2 nanobelts, to emulate the synaptic behavior. Devices incorporating a single titanate nanobelt demonstrate robust and reliable synaptic functions, including excitatory postsynaptic current, paired pulse facilitation, short term plasticity, potentiation and depression, as well as learning-forgetting behavior. In particular, the gradual modulation of conductive states in the single nanobelt device can be achieved by a large number of identical pulses. The mechanism for synaptic functionality of the titanate nanobelt device is attributed to the competition between an electric field driven migration of oxygen vacancies and a thermally induced spontaneous diffusion. These results provide insight into the potential use of titanate nanobelts in synaptic applications requiring continuously addressable states coupled with high processing efficiency.


Subject(s)
Excitatory Postsynaptic Potentials , Nanostructures , Neuronal Plasticity , Oxygen/chemistry , Diffusion , Electrodes , Humans , Models, Neurological , Oxides , Synapses , Titanium
20.
Adv Mater ; 30(18): e1705925, 2018 May.
Article in English | MEDLINE | ID: mdl-29573287

ABSTRACT

Most state-of-the-art electronic wearable sensors are powered by batteries that require regular charging and eventual replacement, which would cause environmental issues and complex management problems. Here, a device concept is reported that can break this paradigm in ambient moisture monitoring-a new class of simple sensors themselves can generate moisture-dependent voltage that can be used to determine the ambient humidity level directly. It is demonstrated that a moisture-driven electrical generator, based on the diffusive flow of water in titanium dioxide (TiO2 ) nanowire networks, can yield an output power density of up to 4 µW cm-2 when exposed to a highly moist environment. This performance is two orders of magnitude better than that reported for carbon-black generators. The output voltage is strongly dependent on humidity of ambient environment. As a big breakthrough, this new type of device is successfully used as self-powered wearable human-breathing monitors and touch pads, which is not achievable by any existing moisture-induced-electricity technology. The availability of high-output self-powered electrical generators will facilitate the design and application of a wide range of new innovative flexible electronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...