Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 664: 251-262, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38467090

ABSTRACT

Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.

2.
Small ; 20(21): e2309830, 2024 May.
Article in English | MEDLINE | ID: mdl-38174610

ABSTRACT

Iron/iron phosphide nanospheres supported on ginkgo leaf-derived carbon (Fe&FeP@gl-C) are prepared using a post-phosphidation approach, with varying amounts of iron (Fe). The activity of the catalysts in the hydrogen evolution reaction (HER) outperforms iron/iron carbide nanospheres supported on ginkgo leaf-derived carbon (Fe&FexC@gl-C), due to enhanced work function, electron transfer, and Volmer processes. The d-band centers of Fe&FeP@gl-C-15 move away from the Fermi level, lowering the H2 desorption energy and accelerating the Heyrovsky reaction. Density functional theory (DFT) calculations reveal that the hydrogen-binding free energy |ΔGH*| value is close to zero for the Fe&FeP@gl-C-15 catalyst, showing a good balance between Volmer and Heyrovsky processes. The Fe&FeP@gl-C-15 catalyst shows excellent hydrogen evolution performance in 0.5 m H2SO4, driving a current density of 10 mA cm-2 at an overpotential of 92 mV. Notably, the Fe&FeP@gl-C-15 catalyst outperforms a 20 wt% Pt/C catalyst, with a smaller overpotential required to drive a higher current density above 375 mA cm-2.

3.
J Hazard Mater ; 446: 130663, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36608584

ABSTRACT

Chromium(VI) (Cr(VI)), a highly toxic metal ion, generally co-exists with organic pollutants in industrial effluents. The clean and effective technology for water purification is an imperative issue but still a challenging task. A series of Bi7O9I3/g-C3N4 (BOI/CN) composites modified by lignin-derived carbon quantum dots (CQDs) were fabricated by hydrothermal method and applied for synchronous photocatalytic removal of Cr (Ⅵ) and levofloxacin (LEV). With the modification of CQDs in BOI/CN heterojunction, the 0.5-CQD/BOI/CN photocatalyst (0.5% content of CQDs) exhibited stronger light-harvesting capacity, more efficient charge separation, and faster electron transfer. Compared to those of BOI (51.2%), CN (36.8%), and BOI/CN (74.4%), the photoreduction efficiency of Cr(VI) reached up to 100% by 0.5-CQD/BOI/CN under 60 min of light irradiation, together with 94.8% degradation efficiency of LEV. The degradation of LEV was dominantly controlled by active species (•OH and •O2-) identified by electron paramagnetic resonance analysis and free radical trapping experiments. The intermediates of LEV were determined by LC-MS and the possible degradation pathway was speculated in combination with density functional theory calculation, involving defluorination, decarboxylation, quinolone rings opening, and piperazine moieties oxidation reactions. This work provides an advanced strategy for the fabrication of high-efficiency CQDs-based Z-scheme photocatalysts for environmental remediation.

4.
Polymers (Basel) ; 14(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35890555

ABSTRACT

The transformation of lignin with natural aromatic structure into value-added carbon dots (CDs) achieves a win-win situation for low-cost production of novel nanomaterials and reasonable disposal of biomass waste. However, it remains challenging to produce multi-emission CDs from biomass for advanced applications. Herein, a green and facile approach to preparing multi-emission CDs from alkali lignin via N and B co-doping is developed. The obtained N and B co-doped CDs (NB-CDs) show multi-emission fluorescence centers at 346, 428 and 514 nm under different excitations. As the doping amount of N and B increases, the fluorescence emission band gradually shifts to 428 and 514 nm, while that at 346 nm decreases. The fluorescence mechanism is explored through the research of the structure, composition and optical performance of NB-CDs in combination with density functional theory (DFT) calculations. It demonstrates that the effect of doping with B-containing functional groups on the fluorescence emission behavior is multivariate, which may be the crucial contribution to the unique multi-emission fluorescence of CDs. The multi-emission NB-CDs with prominent stability are applied for multilevel anti-counterfeiting printing. It provides a promising direction for the sustainable and advanced application of biomass-derived CDs, and the theoretical results highlight a new insight into the deep understanding of the multi-emission fluorescence mechanism.

5.
RSC Adv ; 12(8): 5042-5052, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35425478

ABSTRACT

Carbon nanomaterials, such as carbon nanoonions (CNOs), possess promising applications in various fields. There are urgent demands to synthesize carbon nanomaterials from a green and renewable carbon source. In this study, solid CNOs with relatively uniform size distribution (with diameters of about 30-50 nm), abundant structure defects and oxygen-containing surface functional groups (such as -OH and -COOH) are developed from co-pyrolysis of lignin (LG) and polyethylene (PE) in the presence of Ni-based catalysts. The type of catalyst, the concentration of catalyst and catalytic co-pyrolysis temperature play important roles in the morphologies and properties of CNOs as confirmed by TEM and SEM. Furthermore, the produced CNOs can act as a low-cost and highly-efficient adsorbent to remove Cu(ii) from aqueous solution according to a homogeneous monolayer, chemical action-dominated, endothermic and spontaneous process. The theoretical maximum adsorption capacity of CNOs calculated from the Langmuir model is 100.00 mg g-1. Surface deposition, complexation, π electron-cation interaction and electrostatic interaction are responsible for the adsorption of Cu(ii) using the prepared CNOs.

6.
Polymers (Basel) ; 14(5)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35267790

ABSTRACT

In order to seek the value-added utilization method of sewage sludge and develop low-cost and high-efficient adsorbents, a hydrochar was prepared by the co-hydrothermal carbonization of sewage sludge and citric acid and then characterized. The differences in Pb(II) adsorption performance between the citric acid-sewage sludge hydrochars (AHC) and the hydrochar prepared solely from sewage sludge (SSHC) were also investigated. When citric acid dose ratio (mass ratio of citric acid to dry sewage sludge) is 0.1, the obtained hydrohcar (AHC0.1) has the highest specific surface area (59.95 m2·g-1), the most abundant oxygen-containing functional groups, the lowest pHpzc (5.43), and the highest equilibrium adsorption capacity for Pb(II). The maximum adsorption capacity of AHC0.1 for Pb(II) is 60.88 mg·g-1 (298 K), which is approximately 1.3 times that of SSHC. The potential mechanisms can be electrostatic attraction, co-precipitation, complexation, and cation-π interaction. It was demonstrated that by incorporating citric acid into the hydrothermal carbonization, resource utilization of sewage sludge can be accomplished effectively.

7.
J Colloid Interface Sci ; 617: 557-567, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35303639

ABSTRACT

Considering that hexavalent chromium ions (Cr6+) with high toxicity poses a huge threat to human health and the ecological environment, constructing a rapid and accurate sensing platform is of great significance in detecting the toxic substance. The novel nitrogen and boron co-doped carbon quantum dots (N, B-CQDs) from lignin are synthesized as fluorescent sensors for the detection of Cr6+. The synthetic processes involve the acid hydrolysis step followed by the hydrothermal treatment step. Lignin is firstly depolymerized by cleaving ether bonds in the acidolysis, and N, B-CQDs are consequently formed by the aromatic re-fusion of lignin nanoparticles in the hydrothermal process. The lignin-derived N, B-CQDs show triple emission of purple, blue and green fluorescence under the excitation of 300, 330, and 490 nm, respectively. The triple-emission N, B-CQDs are applied for the triple-channel detection of Cr6+, which exhibit highly sensitive and selective fluorescence quenching for Cr6+ with good linearity (R2 ≤ 0.996) and very low limit of detection as 0.054, 0.049, and 0.077 µM under the excitation of 300, 330 and 490 nm, respectively. The utilization of renewable lignin as CQDs-based fluorescent sensors opens a new avenue for the rapid and accurate detection of Cr6+ through a multichannel sensing platform.


Subject(s)
Quantum Dots , Boron , Carbon/chemistry , Chromium , Fluorescent Dyes , Humans , Ions , Lignin/chemistry , Nitrogen/chemistry
8.
Bioresour Technol ; 345: 126532, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34896538

ABSTRACT

The co-digestion of corn straw and sewage sludge with different additives (biochar, magnetic biochar, Fe3O4) were investigated. The highest cumulative methane yield of 245.15 mL/g VSadded was obtained with the Fe3O4 addition ratio of 5 g/kg, which was 60.47% higher than that of the control run (without additives). The lag phase time was shortened from 5.46 to 3.82 days with a biochar dosage of 5 g/kg. The performance of Fe3O4 on methane production from the co-digestion process was better than that of the biochar and magnetic biochar. The direct interspecies electron transfer (DIET) was enhanced with regard to the increased concentration of acetic acid and decreased concentration of propionic acid. Microbial community analysis showed that the Geobacter and Methanosarcina were selectively enriched on the surface of Fe3O4, promoting the DIET and acetoclastic methanogenesis pathway. The cost-benefit analysis proved that the strategy of recycling Fe3O4 additive has the best economic benefit.


Subject(s)
Sewage , Zea mays , Anaerobiosis , Bioreactors , Charcoal , Digestion , Magnetic Phenomena , Methane
9.
ACS Appl Mater Interfaces ; 13(47): 56465-56475, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34784479

ABSTRACT

Lignin converted to carbon quantum dots (CQDs) attracts tremendous attention for large-scale production of carbon nanomaterials and value-added disposal of biomass wastes (such as the black liquor from pulping industry and the residue from hydrolysis of biomass). The green synthesis of lignin-derived CQDs is reported via a facile two-step method with the adjustment of acid additives containing N or S. The resulting series of CQDs exhibit bright fluorescence in gradient colors from blue to yellowish green, among which the N, S co-doped CQDs with the addition of 2,4-diaminobenzene sulfonic acid show an optimal fluorescence quantum yield (QY) of 30.5%. The red-shift photoluminescence emission behaviors of these CQDs can be attributed to the increased graphitization degree and reduced optical energy band gaps (2.47 → 2.17 eV) with regard to the incorporation of various heteroatoms. The improved fluorescence QYs are consistent with the variation trend of the increased N/C content in the CQDs. The yellowish green-emissive CQDs with bright fluorescence, strong water solubility, and excellent chemical stability perform well in anti-counterfeiting printing. The promising and sustainable approach for the synthesis of tunable fluorescent CQDs exhibits the value-added utilization of lignin for the fluorescence ink production.

10.
Environ Sci Pollut Res Int ; 28(20): 25808-25818, 2021 May.
Article in English | MEDLINE | ID: mdl-33474669

ABSTRACT

In the present study, the simplex lattice mixture design method was adopted to design the artificial biomass with different ratios of three major components (cellulose, hemicellulose, lignin). The methane yield from the co-digestion of the artificial/ natural biomass (corn stover, wheat stover, rice straw, and peanut stalk) samples with the mixed sludge at the mixture ratio of 1:1 based on total solid (TS) content was recorded for 50 days. The original mathematical prediction models for estimating the cumulative methane production, maximum methane production rate, and lag phase time were established based on the experimental results from the co-digestion of artificial biomass with sludge. To investigate the influence of the structural features of biomass and interactions among the components of biomass which contributing to the inhibition of methane production, the macroscopic factor (MF) was proposed. The mathematical models which revealed the relationship between MF and the methane production parameters were developed by the combination of the prediction results from the original mathematical prediction model and experimental results from the co-digestion of natural biomass with sludge. Modification of the original mathematical prediction models was carried out by considering MF. After modification, the relative error (RE) and root mean square error (RMSE) of the prediction model for cumulative methane production were declined from 19.00 to 30.18% and 42.38 mL/g VSadded to that of - 1.93~7.14% and 4.36 mL/g VSadded, respectively.


Subject(s)
Lignin , Sewage , Anaerobiosis , Biofuels , Biomass , Digestion , Lignin/metabolism , Methane
11.
RSC Adv ; 11(60): 37851-37865, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-35498068

ABSTRACT

In the present study, the coked catalysts derived from catalytic reforming of the pyrolysis volatiles of polyethylene (PE), lignin (LG) and their mixture were developed as low-cost and environmentally-friendly carbon materials-containing composites to remove heavy metal ions from aqueous solution. The composites were thoroughly characterized by SEM, TEM, XRD, TGA and FT-IR and then their adsorption capability towards Pb(ii) was investigated. It is found that curved cone-shape carbon nanotubes (CNTs) with abundant structural defects and O-containing surface functional groups, such as C-O, C[double bond, length as m-dash]O and -OH, can be obtained from the catalytic reforming of the mixture of PE and LG. The CNT-containing catalyst composite presents a superior adsorption capability towards Pb(ii) when it is employed in Pb(ii) removal. Adsorption isotherm and adsorption kinetics studies show that the adsorption process can be well simulated by the Langmuir isotherm and pseudo-second-order model, demonstrating that the adsorption is subjected to a homogeneous and chemical process. The calculated maximum adsorption capacity is as high as 146.08 mg g-1, which is much higher than most of the adsorbents reported. Moreover, thermodynamic analysis reveals that the adsorption is spontaneous and endothermic. Accordingly, the used catalyst from the catalytic reforming can be developed as a low-cost and highly-efficient adsorbent.

12.
Bioresour Technol ; 319: 124238, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254461

ABSTRACT

Lignin is the renewable and abundant source of aromatics on earth, and the depolymerization of lignin provides significant potential for producing valuable monophenols. In this work, catalytic hydrogenolysis of organosolv poplar lignin (OPL) in ethanol/isopropanol solvent over monometallic and bimetallic nonprecious catalysts was investigated. Ni/C and a series of NiCu/C catalyst with different Cu loadings were prepared and applied for depolymerization of OPL. The highest yield of phenolic monomers was 63.4 wt% achieved over the Ni10Cu5/C catalyst at 270 °C without external H2. The introduction of Cu in catalysts further promoted the hydrogen donor process of ethanol/isopropanol solvent and facilitated the cleavage of lignin linkages, resulting in the decreased molecular weight of bio-oil. The possible lignin dimer type structures, such as diphenylethane (ß-1) type, phenylcoumaran (ß-5) type, and pinoresinol (ß-ß) type structures, were proposed and identified by MALDI-TOF MS, giving a better understanding of the NiCu/C catalyzed lignin depolymerization.


Subject(s)
2-Propanol , Nickel , Catalysis , Charcoal , Copper , Ethanol , Lignin
13.
J Hazard Mater ; 389: 122102, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32058893

ABSTRACT

Volatile organic compounds (VOCs) have attracted world-wide attention regarding their serious hazards on ecological environment and human health. Industrial processes such as fossil fuel combustion, petrochemicals, painting, coatings, pesticides, plastics, contributed to the large proportion of anthropogenic VOCs emission. Destructive methods (catalysis oxidation and biofiltration) and recovery methods (absorption, adsorption, condensation and membrane separation) have been developed for VOCs removal. Adsorption is established as one of the most promising strategies for VOCs abatement thanks to its characteristics of cost-effectiveness, simplicity and low energy consumption. The prominent progress in VOCs adsorption by different kinds of porous materials (such as carbon-based materials, oxygen-contained materials, organic polymers and composites is carefully summarized in this work, concerning the mechanism of adsorbate-adsorbent interactions, modification methods for the mentioned porous materials, and enhancement of VOCs adsorption capacity. This overview is to provide a comprehensive understanding of VOCs adsorption mechanisms and up-to-date progress of modification technologies for different porous materials.

14.
Chemosphere ; 243: 125419, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31995875

ABSTRACT

Cerium titanate catalyst (Ce-TiO2) is competitive as a substitute for the commercial SCR (selective catalytic reduction) catalysts VO5-WO2/TiO2 due to its high SCR activity and excellent redox performance. The reaction mechanisms of Ce-TiO2 at 180 °C, 240 °C, and 300 °C in the presence of SO2 were systematically studied regarding the evolution of the SCR activity, quantitative analysis of sulfate compounds, and comprehensive identification of the fresh and poisoned catalysts. The results demonstrated that NO conversion at 180 °C in the presence of SO2 is highly sensitive to the formation of cerium sulfates/sulfites, limiting the reactivity of NH4+ adsorbed on SO Brønsted acid sites and inhibiting the E-R reaction pathway. At 240 °C, the degradation of NO conversion was commenced by the cumulative influence of cerium sulfates/sulfites. With the increase of the reaction temperature to 300 °C, the NO conversion is gradually immune to the formation of cerium sulfates in spite of the great amount of cerium sulfates deposited on the deeper interior of CeO2. The high SCR activity of the Ce-TiO2 catalyst in the presence of SO2 at a higher reaction temperature might be ascribed to the synergistic catalysis between surface cerium sulfates and bulk CeO2, where surface cerium sulfates act as acid sites for the adsorption of NH3 and the bulk CeO2 acts as the redox sites. The reaction mechanisms of the Ce-TiO2 catalyst in the presence of SO2 at different temperatures are proposed as the two reaction routes.


Subject(s)
Ammonia/chemistry , Cerium/chemistry , Environmental Restoration and Remediation/methods , Sulfur Dioxide/chemistry , Titanium/chemistry , Adsorption , Catalysis , Oxidation-Reduction , Sulfates/chemistry , Temperature
15.
Sci Rep ; 9(1): 5267, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30918300

ABSTRACT

Global exponential increase in levels of Photovoltaic (PV) module waste is an increasing concern. The purpose of this study is to investigate if there is energy value in the polymers contained within first-generation crystalline silicon (c-Si) PV modules to help contribute positively to recycling rates and the circular economy. One such thermochemical conversion method that appeals to this application is pyrolysis. As c-Si PV modules are made up of glass, metal, semiconductor and polymer layers; pyrolysis has potential not to promote chemical oxidation of any of these layers to help aid delamination and subsequently, recovery. Herein, we analysed both used polymers taken from a deconstructed used PV module and virgin-grade polymers prior to manufacture to determine if any properties or thermal behaviours had changed. The calorific values of the used and virgin-grade Ethylene vinyl acetate (EVA) encapsulant were found to be high, unchanged and comparable to that of biodiesel at 39.51 and 39.87 MJ.Kg-1, respectively. This result signifies that there is energy value within used modules. As such, this study has assessed the pyrolysis behaviour of PV cells and has indicated the energy recovery potential within the used polymers found in c-Si PV modules.

16.
RSC Adv ; 9(55): 32110-32120, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-35530800

ABSTRACT

Ceria-based catalysts are competitive substitutes for the commercial SCR catalysts due to their high SCR activity and excellent redox performance. For a better understanding of the SO2 poisoning mechanism over ceria-based catalysts, the sulfation effect of the Ce/TiO2 catalyst on the SCR activity over a wide reaction temperature range was systematically studied via comprehensive characterizations, in situ DRIFT studies and kinetic studies. The results demonstrated that the NO conversion at 150 °C is significantly inhibited by the formation of cerium sulfites/sulfates due to the inhibited redox properties and excessive adsorption of NH3, which restrict the dissociation of NH3 to NH2, resulting in a much lower reaction rate of E-R reaction over the sulfated Ce/TiO2 catalyst. With the increase in the reaction temperature, the reaction rate of the E-R reaction significantly increased due to the improved redox properties and weakened adsorption of NH3. Moreover, the rate of the C-O reaction over the sulfated Ce/TiO2 catalysts is obviously lower than that of the fresh Ce/TiO2 catalyst. The promotion of NO conversion over the sulfated catalyst at 330 °C is attributed to both the increase in the reaction rate of E-R reaction and the inhibition of the C-O reaction.

17.
Int J Mol Sci ; 18(10)2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28974020

ABSTRACT

Microwave-assisted depolymerization of black-liquor lignin in formic acid was studied, concentrating on the yield of liquid fractions as bio-oil 1 (mainly aromatic monomers) and bio-oil 2 (mainly aromatic oligomers) and the distribution of the specific compositions. Bio-oil 1 (9.69%) and bio-oil 2 (54.39%) achieved their maximum yields under 160 °C with the reaction time of 30 min. The chemical compositions of bio-oil 1 and bio-oil 2 were respectively identified by means of Gas Chromatography-Mass Spectrometer (GC-MS) and Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Ethanone, 1-(4-hydroxy-3-methoxyphenyl) and Ethanone, 1-(4-hydrox-3,5-dimethoxyphenyl) were evidenced to be the two prominent compounds in bio-oil 1. Production of aromatic oligomers with the molecular weight of 328, 342, 358, 378, 394, 424 and 454 identified by MALDI-TOF MS was substantially tuned with the reaction temperature. A two-separate-stage kinetic model was proposed to describe the acidic solvolysis of lignin assisted by microwave heating, where the first stage is dominated by the depolyerization of lignin to monomers and oligomers with the activation energy of 40.27 kJ·mol-1, and the second stage with the activation energy of 49.18 kJ·mol-1 is mainly ascribed to the repolymerization of first-stage produced compounds.


Subject(s)
Formates/chemistry , Lignin/chemistry , Water/chemistry , Gas Chromatography-Mass Spectrometry , Kinetics , Microwaves , Plant Oils/chemistry , Polymerization , Polyphenols/chemistry , Thermodynamics
18.
J Environ Sci (China) ; 53: 293-300, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372755

ABSTRACT

Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700°C and biochar treated by HCl (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCl treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl CO, aromatic CC and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56 and 29.31mg/g, respectively, which were higher than that of WBC (8.64 and 12.81mg/g, respectively), indicating that HCl treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl CO and aromatic CC).


Subject(s)
Cadmium/chemistry , Charcoal/chemistry , Copper/chemistry , Environmental Restoration and Remediation , Hydrogen-Ion Concentration , Models, Chemical
19.
Polymers (Basel) ; 9(6)2017 Jun 21.
Article in English | MEDLINE | ID: mdl-30970917

ABSTRACT

Lignin as the most abundant source of aromatic chemicals in nature has attracted a great deal of attention in both academia and industry. Solvolysis is one of the promising methods to convert lignin to a number of petroleum-based aromatic chemicals. The process involving the depolymerization of the lignin macromolecule and repolymerization of fragments is complicated influenced by heating methods, reaction conditions, presence of a catalyst and solvent systems. Recently, numerous investigations attempted unveiling the inherent mechanism of this process in order to promote the production of valuable aromatics. Oxidative solvolysis of lignin can produce a number of the functionalized monomeric or oligomeric chemicals. A number of research groups should be greatly appreciated with regard to their contributions on the following two concerns: (1) the cracking mechanism of inter-unit linkages during the oxidative solvolysis of lignin; and (2) the development of novel catalysts for oxidative solvolysis of lignin and their performance. Investigations on lignin oxidative solvolysis are extensively overviewed in this work, concerning the above issues and the way-forward for lignin refinery.

20.
Chemosphere ; 150: 1-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26871732

ABSTRACT

To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC.


Subject(s)
Charcoal/chemistry , Lanthanum/chemistry , Phosphates/chemistry , Adsorption , Kinetics , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...