Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 330: 17-26, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33607173

ABSTRACT

Soil salinity is a serious abiotic stress worldwide. Pecan plants (Carya illinoensis K. Koch) have been suggested for cultivation in soils with high levels of salinity owing to their huge demand. To understand the potential molecular mechanisms in pecan in response to salt stress, RNA-sequencing technology was used to compare the transcriptomes of pecan plants treated with 0, 0.3 %, or 0.6 % NaCl solutions. The results indicated that 170,086 unigenes were obtained from pecan leaf cDNA samples. Based on the assembled de novo transcriptome, 53, 535, and 7358 differentially expressed genes (DEGs) were detected between untreated and salt-treated leaves at 8, 24, and 48 h, respectively. Because of the large number of DEGs across different contrasts, a Gene Set Enrichment Analysis was selected to identify gene pathways associated with salt treatment. A total of 1858 DEGs were enriched in 66 gene sets, including 22 up-regulated and 47 down-regulated gene sets in the salt treatment groups, compared with those in the control groups. The up-regulated gene sets were mainly involved in the response to salicylic acid; the regulation of the jasmonic acid-mediated signalling pathway during the short-term treatment (8 h); and the cellular response to hypoxia, cellular respiration, and RNA modification during the long-term treatment (24-48 h). The down-regulated gene sets were predominately associated with photosynthesis, water transport, and the metabolic biosynthetic process under salt stress. Genes related to the Really Interesting New Gene superfamily protein and F-box domain protein in the ubiquitin-dependent degradation pathway were significantly up-regulated or down-regulated in different periods of the regulating process. Overall, these results not only enrich genomic resources but also provide insights into the molecular mechanism in pecan under salt stress.


Subject(s)
Carya , Carya/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Sequence Analysis, RNA , Transcriptome
2.
Curr Genomics ; 15(5): 357-79, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25435799

ABSTRACT

Hickory (Carya cathayensis Sarg.), an important nut-producing species in Southeastern China, has high economic value, but so far there has been no cultivar bred under species although it is mostly propagated by seeding and some elite individuals have been found. It has been found recently that this species has a certain rate of apomixis and poor knowledge of its genetic background has influenced development of a feasible breeding strategy. Here in this paper we first release SSR (Simple sequence repeat) markers developed in this species and their transferability to other three species of the same genus, Carya. A total of 311 pairs of SSR primers in hickory were developed based on sequenced cDNAs of a fruit development-associated cDNA library and RNA-seq data of developing female floral buds and could be used to distinguish hickory, C. hunanensis Cheng et R. H. Chang ex R. H. Chang et Lu, C. illinoensis K. Koch (pecan) and C. dabieshanensis M. C. Liu et Z. J. Li, but they were monomorphic in both hickory and C. hunanensis although multi-alleles have been identified in all the four species. There is a transferability rate of 63.02% observed between hickory and pecan and the markers can be applied to study genetic diversity of accessions in pecan. When used in C. dabieshanensis, it was revealed that C. dabieshanensis had the number of alleles per locus ranging from 2 to 4, observed heterozygosity from 0 to 0.6667 and expected heterozygosity from 0.333 to 0.8667, respectively, which supports the existence of C. dabieshanensis as a separate species different from hickory and indicates that there is potential for selection and breeding in this species.

3.
BMC Genet ; 15 Suppl 1: S11, 2014.
Article in English | MEDLINE | ID: mdl-25079034

ABSTRACT

BACKGROUND: The Tibetan poplar (Populus szechuanica var. tibetica Schneid), which is distributed at altitudes of 2,000-4,500 m above sea level, is an ecologically important species of the Qinghai-Tibet Plateau and adjacent areas. However, the genetic adaptations responsible for its ability to cope with the harsh environment remain unknown. RESULTS: In this study, a total of 24 expressed sequence tag microsatellite (EST-SSR) markers were used to evaluate the genetic diversity and population structure of Tibetan poplars along an altitude gradient. The 172 individuals were of genotypes from low-, medium- and high-altitude populations, and 126 alleles were identified. The expected heterozygosity (HE) value ranged from 0.475 to 0.488 with the highest value found in low-altitude populations and the lowest in high-altitude populations. Genetic variation was low among populations, indicating a limited influence of altitude on microsatellite variation. Low genetic differentiation and high levels of gene flow were detected both between and within the populations along the altitude gradient. An analysis of molecular variance (AMOVA) showed that 6.38% of the total molecular variance was attributed to diversity between populations, while 93.62% variance was associated with differences within populations. There was no clear correlation between genetic variation and altitude, and a Mantel test between genetic distance and altitude resulted in a coefficient of association of r = 0.001, indicating virtually no correlation. CONCLUSION: Microsatellite genotyping results showing genetic diversity and low differentiation suggest that extensive gene flow may have counteracted local adaptations imposed by differences in altitude. The genetic analyses carried out in this study provide new insight for conservation and optimization of future arboriculture.


Subject(s)
Altitude , Genetic Variation , Populus/genetics , DNA, Plant/genetics , Gene Flow , Genetics, Population , Genotype , Microsatellite Repeats , Models, Genetic , Sequence Analysis, DNA , Tibet
4.
New Phytol ; 201(1): 357-365, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24032980

ABSTRACT

The phenotype of an individual is controlled not only by its genes, but also by the environment in which it grows. A growing body of evidence shows that the extent to which phenotypic changes are driven by the environment, known as phenotypic plasticity, is also under genetic control, but an overall picture of genetic variation for phenotypic plasticity remains elusive. Here, we develop a model for mapping quantitative trait loci (QTLs) that regulate environment-induced plastic response. This model enables geneticists to test whether there exist actual QTLs that determine phenotypic plasticity and, if there are, further test how plasticity QTLs control the costs of plastic response by dissecting the genetic correlation of phenotypic plasticity and trait value. The model was used to analyze real data for grain yield of winter wheat (Triticum aestivum), leading to the detection of pleiotropic QTLs and epistatic QTLs that affect phenotypic plasticity and its cost in this crop.


Subject(s)
Environment , Epistasis, Genetic , Genetic Pleiotropy , Genetic Variation , Models, Genetic , Quantitative Trait Loci , Triticum/genetics , Chromosome Mapping/methods , Seeds
5.
Brief Bioinform ; 14(3): 302-14, 2013 May.
Article in English | MEDLINE | ID: mdl-22723459

ABSTRACT

Genetic interactions or epistasis have been thought to play a pivotal role in shaping the formation, development and evolution of life. Previous work focused on lower-order interactions between a pair of genes, but it is obviously inadequate to explain a complex network of genetic interactions and pathways. We review and assess a statistical model for characterizing high-order epistasis among more than two genes or quantitative trait loci (QTLs) that control a complex trait. The model includes a series of start-of-the-art standard procedures for estimating and testing the nature and magnitude of QTL interactions. Results from simulation studies and real data analysis warrant the statistical properties of the model and its usefulness in practice. High-order epistatic mapping will provide a routine procedure for charting a detailed picture of the genetic regulation mechanisms underlying the phenotypic variation of complex traits.


Subject(s)
Epistasis, Genetic , Quantitative Trait Loci , Computer Simulation , Models, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...