Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Chim Acta ; 537: 133-139, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36283493

ABSTRACT

BACKGROUND AND AIMS: The aim of this study was to evaluate the performance of metagenomic next-generation sequencing (mNGS) in identifying microbiological etiologies in pediatric patients with hematological malignancies undergoing fever of unknown origin (FUO). METHODS: A total of 147 children with hematological malignancy suffering febrile diseases without definite microbiological etiologies under conventional tests were enrolled. The clinical record, serum inflammatory biomarkers and mNGS results were analyzed. RESULTS: At least one microorganism was identified by mNGS in 112 of 147 patients (76.2 %). Two or more types of organisms were detected simultaneously in 35.7 % (40/112) of samples. Of the 112 cases with positive mNGS results, the reported microorganisms were considered as etiologies of fever in 50 (44.6 %) cases. The initial antimicrobial regimens were adjusted according to the mNGS results in 48 cases, with 41 patients' febrile diseases resolved. Totally, 27.9 % (41/147) of patients benefit from mNGS. High IL-6 (>390 pg/mL) level was associated with bacterial infection and could help to interpret the results of mNGS. CONCLUSION: mNGS is a novel approach to determine the microbiological etiology of FUO in hematological malignancy patients, which benefits about a quarter of all patients tested. Integration of IL-6 can improve the diagnostic precision of bacterial infection.


Subject(s)
Bacterial Infections , Fever of Unknown Origin , Hematologic Neoplasms , Humans , Child , Fever of Unknown Origin/diagnosis , Fever of Unknown Origin/genetics , Interleukin-6 , Sensitivity and Specificity , High-Throughput Nucleotide Sequencing/methods , Hematologic Neoplasms/complications , Hematologic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL