Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Food Res Int ; 188: 114479, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823840

ABSTRACT

Freezing is a commonly used method for long-term storage of chicken wing products, of which disadvantages are mainly the product damage caused in the process. The aim of this study was to improve the freezing quality of chicken wings with a combination of phosphorus-free water retaining agent (WRA) and high-voltage electrostatic field (HVEF). The effect of WRA acting at different HVEF intensities (0, 1, 3, and 5 kV/cm) on the quality attributes of frozen chicken wings was investigated in 0, 7, 14, 21, 28 and 35 days of frozen storage. The results showed that WRA had functional properties of significantly improving the water holding capacity (WHC), color and texture properties, and fat stability of frozen chicken wing samples. The application of HVEF on this basis helped to promote the absorption of WRA and inhibit oxidative deterioration of chicken wing samples during frozen storage. Meanwhile, the combination of HVEF at 3 kV/cm was more prominent in terms of improvement in WHC, moisture content, color, protein secondary structure and microstructure integrity. This advantage had been consistently maintained with the extension of storage time. Overall, WRA combined with HVEF of 3 kV/cm can be used as an effective strategy to improve the freezing quality of chicken wing samples and has the potential to maintain the frozen chicken wing samples quality for a long time.


Subject(s)
Chickens , Freezing , Static Electricity , Water , Wings, Animal , Animals , Wings, Animal/chemistry , Water/chemistry , Food Preservation/methods , Food Storage/methods , Phosphorus/analysis
2.
Crit Rev Food Sci Nutr ; : 1-21, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37462236

ABSTRACT

Since fresh foods include a significant amount of water, fat, and protein, it is more likely to become infected by microorganisms causing a major loss of quality. Traditional detection techniques are less able to meet customer expectations owing to the limitations of high cost, slow response time, and inability to permit dynamic monitoring. Intelligent non-destructive detection technologies have emerged in recent years, which offer the advantages of small size and fast response at low cost. However, dynamic monitoring of fresh food quality based on intelligent detection technologies on the consumer side has not been rigorously evaluated yet. This paper discussed the application of intelligent detection technologies based on the consumer side in the dynamic monitoring of fresh food freshness, microorganisms, food additives, and pesticide residues. Furthermore, the application of intelligent detection technologies combined with smartphones for quality monitoring and detection of fresh foods is evaluated. Moreover, the challenges and development trends of intelligent fresh food quality detection technologies are also discussed. Intelligent detection technologies based on the consumer side are designed to detect in real-time the quality of fresh food through visual color changes in combination with smartphones. This paper provides ideas and recommendations for the application of intelligent detection technologies based on the consumer side in food quality detection/monitoring and future research trends.

3.
J Agric Food Chem ; 71(26): 10097-10106, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37341110

ABSTRACT

Jujube peels have been recognized as a promising resource of several bioactive ingredients. The main composition of jujube peel polyphenols (JPP) has been identified as rutin, kaempferol-3-O-rutinosid, and salicylic acid. The JPP/zein complexes, whose bioavailability reached 69.73% ± 5.06% in vitro, have been formed successfully. The Caco-2 cell and Caenorhabditis elegans (C. elegans) models have been combined to detect the intestinal barrier protective effect of JPP and its complexes. Results showed that JPP/zein complexes contain better protection capability than JPP in both models. In the Caco-2 cell model, the complex relieved intestinal barrier damage by regulating the tight junction proteins. Moreover, the lysosome pathway has been activated, further regulating immune responses and lipid transportation, improving the barrier function of C. elegans after incubation with JPP/zein complexes according to the proteomics study. This work provides new insights into intestinal barrier protection with bioactive compounds.


Subject(s)
Zein , Ziziphus , Animals , Humans , Caco-2 Cells , Caenorhabditis elegans , Polyphenols/metabolism , Zein/metabolism , Proteomics , Intestinal Mucosa/metabolism , Tight Junctions/metabolism
4.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37009848

ABSTRACT

Fresh food are consumed in large quantities worldwide. During the supply chain, microbial growth in fresh food can lead to the production of a number of metabolites, which make food highly susceptible to spoilage and contamination. The quality of fresh food changes in terms of smell, tenderness, color and texture, which causes a decrease in freshness and consumers acceptance. Therefore, the quality monitoring of fresh food has become an essential part in the supply chain. As traditional analysis methods are highly specialized, expensive and have a small scope of application, which cannot be applied to the supply chain to realize real-time monitoring. Recently, sensing materials have received a lot of attention from researchers due to the low price, high sensitivity and high speed. However, the progress of research on sensing materials has not been critically evaluated. The study examines the progress of research in the application of sensing materials for fresh food quality monitoring. Meanwhile, indicator compounds for spoilage of fresh food are analyzed. Moreover, some suggestions for future research directions are given.

5.
Food Chem ; 404(Pt B): 134684, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36283310

ABSTRACT

Zein has been widely used as a kind of carrier material for its self-assembly capability, while the mechanism of this process is still elusive. Rutin, one of the flavonoids, has been confirmed as the main ingredient of pigments in jujube peels. In this work, the binding mechanism in the zein/rutin complexes has been systematically studied by using multi-spectroscopic methods and molecular simulations. Results have shown that the encapsulation efficiency of complexes has researched the maximum, 67.30 % ± 1.50 %, when the concentration of rutin is 60 µM. Furthermore, the spherical morphology of complexes has been provided by microstructure characterization. Multi-spectroscopic indicated that a static quenching, alongside strong affinity, occurred in the process of interaction. Hydrophobic interaction has been further proven as the main force in zein/rutin complexes from the results of molecular dynamics simulation. This work is vital to fully utilize zein for the delivery of bio-compounds.


Subject(s)
Nanoparticles , Zein , Ziziphus , Zein/chemistry , Rutin/chemistry , Ziziphus/metabolism , Nanoparticles/chemistry , Hydrophobic and Hydrophilic Interactions
6.
Foods ; 11(18)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36141030

ABSTRACT

The high nutritional value and unique flavor of blackberries make them a popular food choice among consumers. Anthocyanin content (AC) and non-anthocyanin flavonoid content (NAFC) are important functional components in blackberry. We tested the AC, NAFC, and antioxidant activities of two blackberry-Ningzhi 1 and Hull-during the following ripening stages: green-fruit stage (GFS), color-turning stage (CTS), reddening stage (RDS), and ripening stage (RPS). The results showed that NAFC decreased and AC increased gradually during the ripening stages. The NAFC of Hull blackberry was the highest during GFS (889.74 µg/g), while the AC of Ningzhi 1 blackberry was the highest during RPS (1027.08 µg/g). NAFC was the highest at the initial stage and gradually decreased with ripening. Anthocyanin accumulation mainly occurred during the later ripening stages. These results provide a reference for comparing the NAFC, AC, and antioxidant activity of Ningzhi 1 and Hull and their changes during different ripening stages.

7.
Food Chem ; 395: 133530, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35777209

ABSTRACT

The ultrasound-assisted aqueous two-phase extraction (UA-ATPE) was employed to develop an effective technique for the extraction of flavonoids from jujube peels (JPs). The extraction conditions were further optimized as K2HPO4 35% (w/w), ethanol 20% (w/w), solid-liquid ratio 1:30 g/mL (w/v), ultrasonic power 200 W, and extraction time 50 min. Moreover, rutin, quercetin 3-ß-d-glucoside, and kaempferol-3-O-rutinosid were identified as the main flavonoids by UPLC-MS/MS. Finally, the extraction mechanism of UA-ATPE was explored, which is salting out effect, hydrogen bonding, van der Waals force, and ultrasound promoted the mass transfer of solvent to cells of JPs, then extraction behavior occurred. The mechanical destruction of JPs cells by ultrasound also further accelerated the release of flavonoids. Flavonoids were captured by W/W emulsion in the bottom phase and distributed to the top phase. Overall, this study proposes a green and clean method, UA-ATPE, to extract flavonoids from JPs, while revealing the mechanism of UA-ATPE.


Subject(s)
Biological Products , Ziziphus , Chromatography, Liquid , Flavonoids , Plant Extracts , Tandem Mass Spectrometry , Water
8.
Food Sci Biotechnol ; 31(6): 721-730, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35646409

ABSTRACT

In this study, a high monacolin K yield was achieved through solid-state fermentation of Ginkgo biloba seeds. Monascus purpureus suspension made from red yeast rice was used as spore inoculum. Fermentation conditions in solid-state fermentation were optimized using response surface methodology, and the optimal conditions for the maximum monacolin K yield (17.71 ± 1.57 mg/g) were 0.22% ammonium sulfate, 0.34% ammonium chloride, 0.05% magnesium sulfate, fermentation time of 12 days, inoculation volume of 11%, and temperature of 27 °C. The total phenolic content of Monascus-fermented ginkgo seeds attained 9.67 mg GAE/g, 4.88-fold higher than that of unfermented ginkgo seeds. The scavenging abilities of DPPH and ABTS free radicals increased to 9.79 mg TE/g and 13.92 mg TE/g, respectively. These findings highlight the importance of investigating the optimal fermentation conditions for maximum monacolin K yield and the utilization value of ginkgo seed as fermentation substrate for higher bioactivities. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01078-z.

9.
Food Chem Toxicol ; 164: 113062, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460827

ABSTRACT

Jujube has great potential as food and traditional drugs in several countries. To study the anti-inflammatory influence of jujube peel polyphenols in lipopolysaccharide (LPS) induced RAW 264.7 cells through mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB) and nuclear erythroid 2-related factor 2 (Nrf2) signaling pathways. In this study, the phenolic composition of polyphenols in jujube peel was analyzed using LC-MS/MS, and which was confirmed that the main polyphenols were p-coumaric acid, catechin and rutin. Meanwhile, jujube peel polyphenols attenuated the generation of TNF-α, IL-1ß, IL-6, NO and PGE2 by inhibiting MAPK and NF-κB signaling pathways. Additionally, jujube peel polyphenol activate Nrf2 from the cytoplasm to the nucleus, regulate antioxidant enzymes and pro-inflammatory cytokines, and reduce oxidative stress and inflammatory responses. Results obtained from this study suggest that jujube peel polyphenols may alleviate oxidative stress and inflammation by inhibiting MAPK and NF-κB and activating Nrf2 signaling pathways. Furthermore, jujube peel polyphenols have a synergistic effect in the treatment of LPS-induced inflammatory in RAW 264.7 cells. In conclusion, this study not only reveals the mechanism by which jujube peel polyphenols inhibit LPS-induced inflammation in RAW 264.7 cells, but also provides guidance for the development of new anti-inflammatory drugs.


Subject(s)
Lipopolysaccharides , Ziziphus , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chromatography, Liquid , Heme Oxygenase-1/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Polyphenols/pharmacology , Polyphenols/therapeutic use , RAW 264.7 Cells , Signal Transduction , Tandem Mass Spectrometry
10.
Food Chem ; 368: 130800, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34403997

ABSTRACT

The work explored the process of ultrasound-assisted adsorption/desorption to efficiently purify jujube peel flavonoids (JPFs) using macroporous resins (MRs). The impact of ultrasound power and temperature on the adsorption/desorption features of JPFs on MRs were studied. The maximum adsorption (80.21 ± 2.11 mg/g) /desorption (76.22 ± 1.68 mg/g) capacity of total flavonoids content were obtained. The pseudo-second-order kinetic and Freundlich isotherm models better described the whole process of ultrasound-assisted adsorption. The adsorption process was spontaneous, physical, and dominated by multilinear intraparticle diffusion. Ultrasound mainly enhanced the adsorption capacity by strengthening the formation of hydrogen bonds and increasing the surface roughness of MRs. Besides, the principal individual flavonoid ((+)-Catechin, (-)-Epicatechin, Rutin, Quercetin-3-O-robinobioside) content of JPFs in ultrasound treatment was 2-3 times that of shaking treatment, and biological activities were significantly increased. Overall, as a low-cost green technology, ultrasound can improve the properties of MRs and better purify JPFs.


Subject(s)
Flavonoids , Ziziphus , Adsorption , Plant Extracts , Resins, Plant , Resins, Synthetic
11.
J Food Sci ; 87(1): 466-480, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34914095

ABSTRACT

4'-O-methylpyridoxine (MPN), a recognized antivitamin B6 compound, is a potentially poisonous substance found in Ginkgo biloba L. In this work, the effects of MPN on the metabolism of vitamin B6 , neurotransmitters, and amino acids were compared in the plasma and brain of young and adult rats under various administration times. Results showed that the contents of MPN residues in the plasma and brain of young rats were 12.72 and 14.76 µM higher than adult rats, respectively. Moreover, the levels of 5-hydroxytryptamine and dopamine in the brain of young rats have decreased by 13.78% and 7.19%, respectively, compared with the control group, at 2 h after MPN administration. Furthermore, the principal component analysis revealed that MPN was an important contributor to the amino acid composition in the brain of young rats. These results suggest that age may lead to different toxic effects of MPN. PRACTICAL APPLICATION: 4'-O-methylpyridoxine is primarily responsible for poisoning due to overconsumption of Ginkgo biloba seeds. This study will provide an exploratory understanding of the age-dependent toxicity of 4'-O-methylpyridoxine.


Subject(s)
Amino Acids , Vitamin B 6 , Animals , Ginkgo biloba , Neurotransmitter Agents , Plant Extracts , Pyridoxine/analogs & derivatives , Rats , Vitamins
12.
Food Chem ; 357: 129747, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33892359

ABSTRACT

Jujube peel (JP) is rich in pigments, which appears red to deep red in color. This study optimized conditions for cocktail enzyme-assisted extraction of jujube peel pigments based on response surface method (RSM). A Box-Behnken design (BBD) was utilized to analyze the effects of buffer liquid volume (BLV), pH, temperature, and incubation time on the total polyphenols content (TPC), total flavonoids content (TFC) and color (L*, a*, b*). Optimal extraction conditions, for the highest concentrations of TPC, TFC and a* values, were 16 mL BLV, pH 7.0, temperature 43 °C, and incubation time 97 min. Finally, concentrations and identities of the eight main constituents (p-coumaric acid, (-)-epicatechin, quercetin-3-O-robinobioside, rutin, kaempferol 3-O-robinobioside, quercetin 3-O-α-l-arabinosyl-(1 â†’ 2)-α-l-rhamnoside, quercetin 3-O-ß-d-xylosyl-(1 â†’ 2)-α-l-rhamnoside, quercetin) in jujube peel pigments were determined using UPLC-MS/MS. The study provides guidance for valorisation of jujube peel, specifically valuable food-safe pigments, during industrial production.

13.
J Food Sci ; 85(12): 4351-4358, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33174232

ABSTRACT

Ginkgo seeds are distinguished as source of highly promising food and traditional Chinese herbal for thousands of years. It is well known for the significant curative effects on some diseases, such as cough and asthma. The current work aimed to study the proximate composition, phytochemical content, and antioxidant capacity of ginkgo seeds fermented by 17 varieties of rice wine starters. Solid state fermentation was used to improve the nutrition of ginkgo seeds. Correlation analysis showed that there was a significant correlation between the flavonoids, approximate composition, and antioxidant activity in fermented ginkgo seeds. Through principal component analysis (PCA), Yp rice wine starter was found as the most suitable for ginkgo seeds fermentation. After fermentation of Yp rice wine starter, the content of quercetin increased by 188.1%, the content of reducing sugars and peptides increased by 16 and 24 times, respectively, and the scavenging ability of 1,1-diphenyl-2-picrylhydrazyl free radicals increased from 4.69 to 12.43 mg TE/g. The solid-state fermentation of ginkgo seeds could be efficiently applied to food industrial production, and fermentation significantly increased the antioxidant activity and flavonoid content of ginkgo seeds, as well as improved their nutrition. PRACTICAL APPLICATION: Traditionally, rice wine starter was used for brewing wine, only some folk use rice wine starter for food production. In this paper, ginkgo seeds are selected for fermentation, which not only solves the problem of ginkgo seeds surplus, but also provides a reliable technical route for industry. It provides reference for the application of rice wine starter in food in the future.


Subject(s)
Antioxidants/analysis , Fermentation , Flavonoids/analysis , Ginkgo biloba/chemistry , Oryza/microbiology , Seeds/chemistry , Wine/microbiology , Bioreactors/microbiology , Oryza/chemistry , Plant Extracts , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...