Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(1): 103730, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35072016

ABSTRACT

Acetylation and phosphorylation are highly conserved posttranslational modifications (PTMs) that regulate cellular metabolism, yet how metabolic control is shared between these PTMs is unknown. Here we analyze transcriptome, proteome, acetylome, and phosphoproteome datasets in E. coli, S. cerevisiae, and mammalian cells across diverse conditions using CAROM, a new approach that uses genome-scale metabolic networks and machine learning to classify targets of PTMs. We built a single machine learning model that predicted targets of each PTM in a condition across all three organisms based on reaction attributes (AUC>0.8). Our model predicted phosphorylated enzymes during a mammalian cell-cycle, which we validate using phosphoproteomics. Interpreting the machine learning model using game theory uncovered enzyme properties including network connectivity, essentiality, and condition-specific factors such as maximum flux that differentiate targets of phosphorylation from acetylation. The conserved and predictable partitioning of metabolic regulation identified here between these PTMs may enable rational rewiring of regulatory circuits.

2.
Methods Mol Biol ; 1975: 305-320, 2019.
Article in English | MEDLINE | ID: mdl-31062316

ABSTRACT

Stem cell metabolism is intrinsically tied to stem cell pluripotency and function. Yet, understanding metabolic rewiring in stem cells has been challenging due to the complex and highly interconnected nature of the metabolic network. Genome-scale metabolic network models are increasingly used to holistically model the metabolic behavior of various cells and tissues using transcriptomics data. However, these powerful approaches that model steady-state behavior have limited utility for studying dynamic stem cell state transitions. To address this complexity, we recently developed the dynamic flux activity (DFA) approach; DFA is a genome-scale modeling approach that uses time-course metabolic data to predict metabolic flux rewiring. This protocol outlines the steps for modeling steady-state and dynamic metabolic behavior using transcriptomics and time-course metabolomics data, respectively. Using data from naive and primed pluripotent stem cells, we demonstrate how we can use genome-scale modeling and DFA to comprehensively characterize the metabolic differences between these states.


Subject(s)
Cell Differentiation , Cell Lineage , Computational Biology/methods , Gene Regulatory Networks , Metabolome , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Transcriptome
3.
Genome Biol ; 20(1): 49, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30823893

ABSTRACT

Histone acetylation plays a central role in gene regulation and is sensitive to the levels of metabolic intermediates. However, predicting the impact of metabolic alterations on acetylation in pathological conditions is a significant challenge. Here, we present a genome-scale network model that predicts the impact of nutritional environment and genetic alterations on histone acetylation. It identifies cell types that are sensitive to histone deacetylase inhibitors based on their metabolic state, and we validate metabolites that alter drug sensitivity. Our model provides a mechanistic framework for predicting how metabolic perturbations contribute to epigenetic changes and sensitivity to deacetylase inhibitors.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Metabolism , Models, Genetic , Vorinostat/pharmacology , Acetylation , HeLa Cells , Humans
4.
PLoS Comput Biol ; 15(3): e1006835, 2019 03.
Article in English | MEDLINE | ID: mdl-30849073

ABSTRACT

The ultimate goal of metabolic engineering is to produce desired compounds on an industrial scale in a cost effective manner. To address challenges in metabolic engineering, computational strain optimization algorithms based on genome-scale metabolic models have increasingly been used to aid in overproducing products of interest. However, most of these strain optimization algorithms utilize a metabolic network alone, with few approaches providing strategies that also include transcriptional regulation. Moreover previous integrated approaches generally require a pre-existing regulatory network. In this study, we developed a novel strain design algorithm, named OptRAM (Optimization of Regulatory And Metabolic Networks), which can identify combinatorial optimization strategies including overexpression, knockdown or knockout of both metabolic genes and transcription factors. OptRAM is based on our previous IDREAM integrated network framework, which makes it able to deduce a regulatory network from data. OptRAM uses simulated annealing with a novel objective function, which can ensure a favorable coupling between desired chemical and cell growth. The other advance we propose is a systematic evaluation metric of multiple solutions, by considering the essential genes, flux variation, and engineering manipulation cost. We applied OptRAM to generate strain designs for succinate, 2,3-butanediol, and ethanol overproduction in yeast, which predicted high minimum predicted target production rate compared with other methods and previous literature values. Moreover, most of the genes and TFs proposed to be altered by OptRAM in these scenarios have been validated by modification of the exact genes or the target genes regulated by the TFs, for overproduction of these desired compounds by in vivo experiments cataloged in the LASER database. Particularly, we successfully validated the predicted strain optimization strategy for ethanol production by fermentation experiment. In conclusion, OptRAM can provide a useful approach that leverages an integrated transcriptional regulatory network and metabolic network to guide metabolic engineering applications.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Algorithms , Butylene Glycols/metabolism , Computer Simulation , Ethanol/metabolism , Genes, Fungal , Metabolic Engineering , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
5.
BMC Syst Biol ; 12(Suppl 4): 47, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29745852

ABSTRACT

BACKGROUND: Rice (Oryza sativa) is one of the most important grain crops, which serves as food source for nearly half of the world population. The study of rice development process as well as related strategies for production has made significant progress. However, the comprehensive study on development of different rice tissues at both transcriptomic and metabolic flux level across different stages was lacked. RESULTS: In this study, we performed RNA-Seq and characterized the expression profiles of differentiated tissues from Oryza sativa Zhonghua 11, including leaves, sheath, stamen, pistil, lemma and palea of the booting stage, and embryo, endosperm, lemma and palea of the mature grain stage. By integrating this set of transcriptome data of different rice tissues at different stages with a genome-scale rice metabolic model, we generated tissue-specific models and investigated the shift of metabolic patterns, and the discrepancy between transcriptomic and metabolic level. We found although the flux patterns are not very similar with the gene expression pattern, the tissues at booting stage and mature grain stage can be separately clustered by primary metabolism at either level. While the gene expression and flux distribution of secondary metabolism is more diverse across tissues and stages. The critical rate-limiting reactions and pathways were also identified. In addition, we compared the patterns of the same tissue at different stages and the different tissues at same stage. There are more altered pathways at gene expression level than metabolic level, which indicate the metabolism is more robust to reflect the phenotype, and might largely because of the complex post-transcriptional modification. CONCLUSIONS: The tissue-specific models revealed more detail metabolic pattern shift among different tissues and stages, which is of great significance to uncover mechanism of rice grain development and further improve production and quality of rice.


Subject(s)
Gene Expression Profiling , Metabolic Flux Analysis , Oryza/growth & development , Organ Specificity , Oryza/genetics , Oryza/metabolism , Sequence Analysis, RNA
6.
J Bioinform Comput Biol ; 14(5): 1644001, 2016 10.
Article in English | MEDLINE | ID: mdl-27760488

ABSTRACT

Cancer cells have different metabolism in contrast to normal cells. The advancement in omics measurement technology enables the genome-wide characterization of altered cellular processes in cancers, but the metabolic flux landscape of cancer is still far from understood. In this study, we compared the well-reconstructed tissue-specific models of five cancers, including breast, liver, lung, renal, and urothelial cancer, and their corresponding normal cells. There are similar patterns in majority of significantly regulated pathways and enriched pathways in correlated reaction sets. But the differences among cancers are also explicit. The renal cancer demonstrates more dramatic difference with other cancer models, including the smallest number of reactions, flux distribution patterns, and specifically correlated pathways. We also validated the predicted essential genes and revealed the Warburg effect by in silico simulation in renal cancer, which are consistent with the measurements for renal cancer. In conclusion, the tissue-specific metabolic model is more suitable to investigate the cancer metabolism. The similarity and heterogenicity of metabolic reprogramming in different cancers are crucial for understanding the aberrant mechanisms of cancer proliferation, which is fundamental for identifying drug targets and biomarkers.


Subject(s)
Metabolic Networks and Pathways , Models, Biological , Neoplasms/metabolism , Energy Metabolism , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/genetics
7.
J Integr Plant Biol ; 58(1): 2-11, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26010949

ABSTRACT

Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions.


Subject(s)
Arabidopsis/genetics , Carbon Dioxide/pharmacology , Gene Expression Regulation, Plant/drug effects , Metabolic Flux Analysis , Models, Biological , Arabidopsis/drug effects , Gene Expression Profiling , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Oxygen/metabolism , Transcription, Genetic/drug effects , Transcriptome/drug effects , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...