Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(6): e0156789, 2016.
Article in English | MEDLINE | ID: mdl-27257965

ABSTRACT

BACKGROUND: The prevalence of BRCA1/2 variants in Chinese breast cancer patients varies among studies. Germline or somatic BRCA1/2 mutations are associated with sensitivity to poly(ADP-ribose) polymerase-1 inhibitors and DNA-damaging agents. We aimed to investigate the distribution of both somatic and germline BRCA1/2 variants in unselected Chinese breast cancer patients, and explore their roles in tumor phenotype and disease prognosis. METHODS: 507 breast cancer patients, unselected for family history of breast cancer or age at diagnosis, were prospectively enrolled from West China Hospital between Feb. 2008 and Feb. 2014. BRCA1/2 variants in the exons/flanking regions were detected in fresh-frozen tumors using next-generation sequencing and confirmed by independent methods. Germline/somatic status was validated by Sanger sequencing in paired blood/normal tissue. RESULTS: BRCA1/2 pathogenic or likely pathogenic (P/LP) variants were detected in 50 patients (9.9%), including 40 germline carriers (18 in BRCA1, 22 in BRCA2), 9 patients with somatic variants (3 in BRCA1, 6 in BRCA2), and 1 patient with concurrent germline/somatic variants in BRCA2. The triple-negative (21.4%) and Luminal B (9.7%) subtypes had higher rates of BRCA1/2 variants. In patients with disease stage 0~II, presence of a germline or somatic BRCA1 P/LP variant increased the risk of relapse as compared to non-carriers [univariate hazard ratio (HR): 3.70, P = 0.04]. Germline BRCA1 P/LP variants, which were associated with aggressive tumor phenotypes, predicted worse disease-free survival in the subgroup of stage 0~II (HR: 4.52, P = 0.02) and N0 (HR: 5.4, P = 0.04) compared to non-carriers. CONCLUSION: A high frequency of germline and somatic BRCA1/2 P/LP variants was detected in unselected Chinese breast cancer patients. Luminal B subtype should be considered as a high-risk population of BRCA1/2 mutation, in addition to triple-negative breast cancer. BRCA1 status was associated with aggressive tumor phenotype and worse disease progression in early stage breast cancer patients.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Adult , Asian People , China , Disease-Free Survival , Female , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Humans , Middle Aged , Mutation/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prevalence , Prognosis , Prospective Studies , Triple Negative Breast Neoplasms/genetics
2.
J Biol Chem ; 291(27): 14373-14384, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27226613

ABSTRACT

Valosin-containing protein/p97(VCP) is a hexameric ATPase vital to protein degradation during endoplasmic reticulum stress. It regulates diverse cellular functions including autophagy, chromatin remodeling, and DNA repair. In addition, mutations in VCP cause inclusion body myopathy, Paget disease of the bone, and frontotemporal dementia (IBMPFD), as well as amyotrophic lateral sclerosis. Nevertheless, how the VCP activities were regulated and how the pathogenic mutations affect the function of VCP during stress are not unclear. Here we show that the small ubiquitin-like modifier (SUMO)-ylation of VCP is a normal stress response inhibited by the disease-causing mutations in the N-domain. Under oxidative and endoplasmic reticulum stress conditions, the SUMOylation of VCP facilitates the distribution of VCP to stress granules and nucleus, and promotes the VCP hexamer assembly. In contrast, pathogenic mutations in the VCP N-domain lead to reduced SUMOylation and weakened VCP hexamer formation upon stress. Defective SUMOylation of VCP also causes altered co-factor binding and attenuated endoplasmic reticulum-associated protein degradation. Furthermore, SUMO-defective VCP fails to protect against stress-induced toxicity in Drosophila Therefore, our results have revealed SUMOylation as a molecular signaling switch to regulate the distribution and functions of VCP during stress response, and suggest that deficiency in VCP SUMOylation caused by pathogenic mutations will render cells vulnerable to stress insults.


Subject(s)
Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Endoplasmic Reticulum Stress , Mutation, Missense , Sumoylation , Adenosine Triphosphatases/genetics , Amino Acid Substitution , Animals , Cell Cycle Proteins/genetics , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Male , Middle Aged , Protein Structure, Tertiary , Valosin Containing Protein
3.
Avian Dis ; 55(1): 97-102, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21500643

ABSTRACT

To determine the distribution of duck plague virus (DPV) gE protein in paraformaldehyde-fixed, paraffin-embedded tissues of experimentally DPV-infected ducks, an indirect immunoperoxidase assay was established to detect glycoprotein E (gE) protein for the first time. The rabbit anti-His-gE serum, raised against the recombinant His-gE fusion protein expressed in Escherichia coli BL21 (DE3), was prepared and purified. Western blotting and indirect immunofluorescence analysis showed that the anti-His-gE serum had a high level of reactivity and specificity and could be used as the first antibody for further experiments to study the distribution of DPV gE protein in DPV-infected tissues. A number of DPV gE proteins were distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus, duodenum, jejunum, ileum, and kidney of DPV-infected ducks and a few DPV gE were distributed in the Harders glands, myocardium, cerebrum, and lung, whereas the gE was not seen in the skin, muscle, and pancreas. Moreover, DPV gE was expressed abundantly in the cytoplasm of lymphocytes, reticulum cells, macrophages, epithelial cells, and hepatocytes. The present study may be useful not only for describing the characteristics of gE expression and distribution in infected ducks but also for understanding the pathogenesis of DPV.


Subject(s)
Ducks , Herpesviridae Infections/veterinary , Herpesviridae/immunology , Poultry Diseases/virology , Viral Envelope Proteins/metabolism , Animals , Gene Expression Regulation, Viral/physiology , Herpesviridae/metabolism , Herpesviridae Infections/virology , Immunohistochemistry/veterinary , Poultry Diseases/immunology , Viral Envelope Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...