Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
PLoS One ; 17(1): e0261232, 2022.
Article in English | MEDLINE | ID: mdl-35061694

ABSTRACT

The morphological diversity of floral organs can largely be attributed to functional divergence in the MADS-box gene family. Nonetheless, research based on the ABCDE model has yet to conclusively determine whether the AGAMOUS-LIKE 6 (AGL6) subgroup has a direct influence on floral organ development. In the current study, the ABCDE model was used to quantify the contributions of ABCDE and AGL6 genes in the emergence of floral organs. We determined that the flower formation contribution values of the ABCDE and AGL6 genes were as follows: A gene, 0.192; B gene, 0.231; CD gene, 0.192; E gene, 0.385; and AGL6, 0.077. As AGL6 does not directly influence floral structure formation, the contribution value of AGL6 to flower formation was low. Furthermore, the gradient values of the floral organs were as follows: sepals, 0.572; petals, 1.606; stamens, 2.409; and carpels, 2.288. We also performed detailed analysis of the ABCDE and AGL6 genes using the Circlize package in R. Our results suggest that these genes likely emerged in one of two orders: 1) B genes→CD genes→AGL6→E genes→A genes; or 2) B genes→CD genes→AGL6/E genes→A genes. We use the analytic hierarchy process (AHP) to prove the contribution values and gradient values of floral organs. This is the first study to understand the contribution values of ABCDE and AGL6 genes using the AHP and the Circlize package in R.


Subject(s)
Analytic Hierarchy Process
2.
J Biol Res (Thessalon) ; 28(1): 12, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34049600

ABSTRACT

BACKGROUND: MADS-box transcription factors function as homo- or heterodimers and regulate many aspects of plant development; moreover, MADS-box genes have undergone extensive duplication and divergence. For example, the morphological diversity of floral organs is closely related to the functional divergence of the MADS-box gene family. B-class genes (such as Arabidopsis thaliana APETALA3 [AP3] and PISTILLATA [PI]) belong to a subgroup of MADS-box genes. Here, we collected 97 MADS-box B protein sequences from 21 seed plant species and examined their motifs to better understand the functional evolution of B proteins. RESULTS: We used the MEME tool to identify conserved sequence motifs in these B proteins; unique motif arrangements and sequences were identified in these B proteins. The keratin-like domains of Malus domestica and Populus trichocarpa B proteins differed from those in other angiosperms, suggesting that a novel regulatory network might have evolved in these species. The MADS domains of Nelumbo nucifera, Glycine max, and Amborella trichopoda B-proteins contained motif 9; in contrast, those of other plants contained motif 1. Protein modelling analyses revealed that MADS domains with motif 9 may lack amino acid sites required for DNA-binding. These results suggested that the three species might share an alternative mechanism controlling floral development. CONCLUSIONS: Amborella trichopoda has B proteins with either motif 1 or motif 9 MADS domains, suggesting that these two types of MADS domains evolved from the ancestral domain into two groups, those with motif 9 (N. nucifera and G. max), and those with motif 1. Moreover, our results suggest that the homodimer/heterodimer intermediate transition structure first appeared in A. trichopoda. Therefore, our systematic analysis of the motifs in B proteins sheds light on the evolution of these important transcription factors.

3.
Front Pharmacol ; 11: 575704, 2020.
Article in English | MEDLINE | ID: mdl-33328984

ABSTRACT

Cordyceps militaris (C. militaris) is a fungus with a long history of widespread use in folk medicine, and its biological and medicinal functions are well studied. A crucial pharmacological effect of C. militaris is immunomodulation. In this review, we catalog the immunomodulatory effects of different extracts of C. militaris, namely total extracts, polysaccharides and cordycepin. Total extracts obtained using water or 50% ethyl alcohol and polysaccharides from C. militaris were discovered to tend to promote type 1 immunity, whereas total extracts obtained using 70-80% ethyl alcohol and cordycepin from C. militaris were more likely to promote type 2 immunity. This article is the first to classify the immunomodulatory effects of different extracts of C. militaris. In addition, we discovered a relationship between different segments or extracts and differing types of immunity. This review can provide the readers a comprehensive understanding on the immunomodulatory effects of the precious folk medicine and guidance on its use for both health people and those with an immunodeficiency.

4.
J Biol Res (Thessalon) ; 27(1): 19, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33298185

ABSTRACT

Campbell Biology is divided into eight units and 56 chapters. The organization and size of this book are appropriate and easy for first-year university students and help them to learn and digest the content. Campbell Biology is currently among the best biology books and it is listed with the best shelling textbooks. Campbell Biology is mainly for first-year university students, but it is also an important book for postgraduate medical examinations. Moreover, some high school students may use it as an essential reference book. In its current edition, the latest information in various fields has been added, such as the basal body, which was previously called the 9*3 type microtube arrangement but now has been renamed as the 9 + 0 type in Chapter 6. The updates in molecular biology are closer to the current situation, such as the addition of information on next-generation sequencing and CRISPR/Cas9 in Chapter 20. This content can enable readers to acquire the latest knowledge. Reading this book and understanding the information presented in its pages is very helpful for the future life science professionals. Thus, Campbell Biology is very valuable textbook in the field of biology.

5.
Biol Res ; 52(1): 25, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31018872

ABSTRACT

BACKGROUND: The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS: These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS: The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.


Subject(s)
Arabidopsis Proteins/genetics , Cycadopsida/genetics , MADS Domain Proteins/genetics , Magnoliopsida/genetics , Period Circadian Proteins/genetics , Phylogeny , Evolution, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant
6.
Biol. Res ; 52: 25, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011427

ABSTRACT

BACKGROUND: The morphological diversity of flower organs is closely related to functional divergence within the MADS-box gene family. Bryophytes and seedless vascular plants have MADS-box genes but do not have ABCDE or AGAMOUS-LIKE6 (AGL6) genes. ABCDE and AGL6 genes belong to the subgroup of MADS-box genes. Previous works suggest that the B gene was the first ABCDE and AGL6 genes to emerge in plant but there are no mentions about the probable origin time of ACDE and AGL6 genes. Here, we collected ABCDE and AGL6 gene 381 protein sequences and 361 coding sequences from gymnosperms and angiosperms and reconstructed a complete Bayesian phylogeny of these genes. In this study, we want to clarify the probable origin time of ABCDE and AGL6 genes is a great help for understanding the role of the formation of the flower, which can decipher the forming order of MADS-box genes in the future. RESULTS: These genes appeared to have been under purifying selection and their evolutionary rates are not significantly different from each other. Using the Bayesian evolutionary analysis by sampling trees (BEAST) tool, we estimated that: the mutation rate of the ABCDE and AGL6 genes was 2.617 × 10-3 substitutions/site/million years, and that B genes originated 339 million years ago (MYA), CD genes originated 322 MYA, and A genes shared the most recent common ancestor with E/AGL6 296 MYA, respectively. CONCLUSIONS: The phylogeny of ABCDE and AGL6 genes subfamilies differed. The APETALA1 (AP1 or A gene) subfamily clustered into one group. The APETALA3/PISTILLATA (AP3/PI or B genes) subfamily clustered into two groups: the AP3 and PI clades. The AGAMOUS/SHATTERPROOF/SEEDSTICK (AG/SHP/STK or CD genes) subfamily clustered into a single group. The SEPALLATA (SEP or E gene) subfamily in angiosperms clustered into two groups: the SEP1/2/4 and SEP3 clades. The AGL6 subfamily clustered into a single group. Moreover, ABCDE and AGL6 genes appeared in the following order: AP3/PI → AG/SHP/STK → AGL6/SEP/AP1. In this study, we collected candidate sequences from gymnosperms and angiosperms. This study highlights important events in the evolutionary history of the ABCDE and AGL6 gene families and clarifies their evolutionary path.


Subject(s)
Phylogeny , Magnoliopsida/genetics , MADS Domain Proteins/genetics , Arabidopsis Proteins/genetics , Cycadopsida/genetics , Period Circadian Proteins/genetics , Genes, Plant , Genome, Plant , Gene Expression Regulation, Plant , Evolution, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...