Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(1)2023 01 18.
Article in English | MEDLINE | ID: mdl-36595251

ABSTRACT

Objective.A flexible high-density surface electromyography (HD-sEMG) sensor combined with an adaptive algorithm was used to collect and analyze the swallowing activities of patients with Post-stroke dysphagia.Approach.The electrode frame, modified electrode, and bonded substrate of the sensor were fabricated using a flexible printed circuit process, controlled drop coating, and molding, respectively. The adaptation algorithm was achieved by using Laplace and Teager-Kaiser energy operators to extract active segments, a cross-correlation coefficient matrix (CCCM) to evaluate synergy, and multi-frame real-time dynamic root mean square (RMS) to visualize spatiotemporal information to screen lesions and level of dysphagia. Finally, support vector machines (SVM) were adopted to explore the classification accuracy of sex, age, and lesion location with small sample sizes.Main results.The sensor not only has a basic low contact impedance (0.262 kΩ) and high signal-to-noise ratio (37.284 ± 1.088 dB) but also achieves other characteristics suitable for clinical applications, such as flexibility (747.67 kPa) and durability (1000 times) balance, simple operation (including initial, repeated, and replacement use), and low cost ($ 15.2). The three conclusions are as follows. CCCM can be used as a criterion for judging the unbalanced muscle region of the patient's neck and can accurately locate unbalanced muscles. The RMS cloud map provides the time consumption, swallowing times, and unbalanced areas. When the lesion location involves the left and right hemispheres simultaneously, it can be used as an evidence of relatively severely unbalanced areas. The classification accuracy of SVM in terms of sex, age, and lesion location was as high as 100%.Significance.The HD-sEMG sensor in this study and the adaptation algorithm will contribute to the establishment of a larger-scale database in the future to establish more detailed and accurate quantitative standards, which will be the basis for developing more optimized screening mechanisms and rehabilitation assessment methods.


Subject(s)
Deglutition Disorders , Humans , Electromyography/methods , Deglutition Disorders/diagnosis , Deglutition Disorders/etiology , Muscle, Skeletal , Deglutition/physiology , Muscle Contraction
2.
J Neural Eng ; 18(6)2021 12 30.
Article in English | MEDLINE | ID: mdl-34883478

ABSTRACT

Objective. A novel flexible hydrogel electrode with a strong moisturizing ability was prepared for long-term electroencephalography (EEG) monitoring.Approach. The hydrogel was synthesized by polymerizing the N-acryloyl glycinamide monomer. And a proper amount of glycerin was added to the hydrogel to increase the moisture retention ability of the electrodes. The hydrogel shows high mechanical properties, and the liquid in the hydrogel produces a hydrating effect on the skin stratum corneum, which could decrease the contact impedance between skin and electrode. In addition, the installation of hydrogel electrode is very convenient, and the skin of the subject does not need to be abraded.Main results. Scanning electron microscope images show that there are a large number of micropores in the hydrogel, which provide storage space for water molecules. The average potential drift of the hydrogel electrode is relatively low (1.974 ± 0.560µV min-1). The average contact impedance of hydrogel electrode in forehead region and hair region are 6.43 ± 0.84 kΩ cm2and 13.15 ± 3.72 kΩ cm2, respectively. The result of open/closed paradigm, steady-state visual evoked potentials, and P300 visual evoked potential show that hydrogel electrode has excellent performance. Compared with the hydrogel without glycerin, the moisture retention ability of hydrogel containing glycerin was greatly improved.Significance.Compared with standard Ag/AgCl wet electrode, hydrogel electrode is more convenient to install and has strong moisture retention ability, which makes it have great potential in daily life for long-term EEG recording.


Subject(s)
Evoked Potentials, Visual , Hydrogels , Electric Impedance , Electrodes , Electroencephalography/methods
3.
ACS Omega ; 3(1): 1102-1109, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457952

ABSTRACT

The preparation of quantum dot (QD)-sensitized photoanodes, especially the deposition of QDs on TiO2 matrix, is usually a time-extensive and performance-determinant step in the construction of QD-sensitized solar cells (QDSCs). Herein, a transformative approach for immobilizing QD on the TiO2 matrix was developed by simply mixing the as-prepared oil-soluble QDs with TiO2 P25 particles suspension for a period as short as half a minute. The solar paint was prepared by adding the TiO2/QD composite in a binder solution under ultrasonication. The QD-sensitized photoanodes were then obtained by simply brushing the solar paint on a fluorine-doped tin oxide substrate followed by a low-temperature annealing at ambient atmosphere. Sandwich-structured complete QDSCs were assembled with the use of Cu2S/brass as counter electrode and polysulfide redox couple as an electrolyte. The photovoltaic performance of the resulting Zn-Cu-In-Se (ZCISe) QDSCs was evaluated after primary optimization of the QD/TiO2 ratio as well as the thicknesses of photoanode films. In this proof of concept with a simple solar paint approach for photoanode films, an average power conversion efficiency of 4.13% (J sc = 11.11 mA/cm2, V oc = 0.590 V, fill factor = 0.631) was obtained under standard irradiation condition. This facile solar paint approach offers a simple and convenient approach for QD-sensitized photoanodes in the construction of QDSCs.

4.
ACS Appl Mater Interfaces ; 9(6): 5328-5336, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28092935

ABSTRACT

I-III-VI2 group "green" quantum dots (QDs) are attracting increasing attention in photoelectronic conversion applications. Herein, on the basis of the "simultaneous nucleation and growth" approach, Cu-In-Ga-Se (CIGSe) QDs with light harvesting range of about 1000 nm were synthesized and used as sensitizer to construct quantum dot sensitized solar cells (QDSCs). Inductively coupled plasma atomic emission spectrometry (ICP-AES), wild-angle X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analyses demonstrate that the Ga element was alloyed in the Cu-In-Se (CISe) host. Ultraviolet photoelectron spectroscopy (UPS) and femtosecond (fs) resolution transient absorption (TA) measurement results indicate that the alloying strategy could optimize the electronic structure in the obtained CIGSe QD material, thus matching well with TiO2 substrate and favoring the photogenerated electron extraction. Open circuit voltage decay (OCVD) and impedance spectroscopy (IS) tests indicate that the intrinsic recombination in CIGSe QDSCs was well suppressed relative to that in CISe QDSCs. As a result, CIGSe based QDSCs with use of titanium mesh supported mesoporous carbon counter electrode exhibited a champion efficiency of 11.49% (Jsc = 25.01 mA/cm2, Voc = 0.740 V, FF = 0.621) under the irradiation of full one sun in comparison with 9.46% for CISe QDSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...