Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(24): 26708-26718, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911737

ABSTRACT

Y-H bond functionalization has always been the focus of research interest in the area of organic synthesis. Direct hydrogen atom transfer (HAT) from the Y-H bond is one of the most efficient and practical methods to activate the Y-H bond. Recently, nitrogen centered radical cations were broadly utilized as H-abstraction catalysts to activate Y-H bonds via the HAT process. As a type of HAT catalyst, the H-affinity of nitrogen centered radical cations is a significant thermodynamic parameter to quantitatively evaluate the thermodynamic H-abstraction potentials of nitrogen centered radical cations. In this work, the pK a values of 120 protonated N-containing compounds in acetonitrile (AN) are predicted, and the H-affinities of 120 nitrogen centered radical cations in AN are derived from the reduction potentials of nitrogen centered radical cations and pK a of protonated N-containing compounds using Hess' law. This work focuses on the H-abstraction abilities of 120 nitrogen centered radical cations in AN to enrich the molecule library of novel HAT catalysts or H-abstractors and provides valuable thermodynamic guidelines for the application of nitrogen centered radical cations in Y-H bond functionalization.

2.
J Org Chem ; 89(9): 6205-6221, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38632842

ABSTRACT

Organic hydride/acid pairs have been reported as multisite proton-coupled electron transfer (MS-PCET) reagents in reductive MS-PCET reactions recently. Since the key step for an organic hydride/acid pair acting as an MS-PCET reagent is a chemical process of the organic hydride/acid pair releasing a formal hydrogen atom, the bond dissociation free energy of the organic hydride/acid pair releasing a formal hydrogen atom is a valuable thermodynamic parameter for objectively evaluating the thermodynamic potential for an organic hydride/acid pair to act as an MS-PCET reagent. Now, organic hydride/acid pairs of 216 organic hydrides have been demonstrated to be a potential type of thermodynamically potential-regulated MS-PCET reagent. Without a doubt, organic hydride/acid pairs reflect the change of N-substituted organic hydrides from simple hydride reductants to thermodynamically-regulated MS-PCET reagents, which could significantly expand the availability of novel MS-PCET reagents.

3.
RSC Adv ; 14(1): 222-232, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173608

ABSTRACT

N-heterocycles are important chemical hydrogen-storage materials, and the acceptorless dehydrogenation and hydrogenation of N-heterocycles as organic hydrogen carriers have been widely studied, with the main focus on the catalyst synthesis and design, investigation of the redox mechanisms, and extension of substrate scope. In this work, the Gibbs free energies of the dehydrogenation of pre-aromatic N-heterocycles (YH2) and the hydrogenation of aromatic N-heterocycles (Y), i.e., ΔGH2R(YH2) and ΔGH2A(Y), were derived by constructing thermodynamic cycles using Hess' law. The thermodynamic abilities for the acceptorless dehydrogenation and hydrogenation of 78 pre-aromatic N-heterocycles (YH2) and related 78 aromatic N-heterocycles (Y) were well evaluated and discussed in acetonitrile. Moreover, the applications of the two thermodynamic parameters in identifying pre-aromatic N-heterocycles possessing reversible dehydrogenation and hydrogenation properties and the selection of the pre-aromatic N-heterocyclic hydrogen reductants in catalytic hydrogenation were considered and are discussed in detail. Undoubtedly, this work focuses on two new thermodynamic parameters of pre-aromatic and aromatic N-heterocycles, namely ΔGH2R(YH2) and ΔGH2A(Y), which are important supplements to our previous work to offer precise insights into the chemical hydrogen storage and hydrogenation reactions of pre-aromatic and aromatic N-heterocycles.

4.
ACS Omega ; 8(35): 31984-31997, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692224

ABSTRACT

Since the hydrogenation of imines (X) and the dehydrogenation of amines (XH2) generally involve the two hydrogen ions (H- + H+) transfer, the thermodynamic abilities of various amines releasing hydrides or two hydrogen ions as well as various imines accepting protons or two hydrogen ions are important and characteristic physical parameters. In this work, the pKa values of 84 protonated imines (XH+) in acetonitrile were predicted. Combining Gibbs free energy changes of amines releasing hydrides in acetonitrile from our previous work with the pKa(XH+) values, the Gibbs free energy changes of amines releasing two hydrogen ions and imines accepting two hydrogen ions were derived using Hess's law by constructing thermochemical cycles, and the thermodynamic evaluations of amines as hydrides or two hydrogen ions reductants and imines as protons or two hydrogen ions acceptors are well compared and discussed. Eventually, the practical application of thermodynamic data for amines and imines on hydrogenation feasibility, mechanism, and possible elementary steps was shown and discussed in this paper from the point of thermodynamics.

5.
RSC Adv ; 13(23): 16023-16033, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37260565

ABSTRACT

Nitrogen-containing heterocycles are an important class of antioxidants, and their reactivity and selectivity in hydrogen atom reactions have attracted significant interest from chemists. In this work, the kinetics of hydrogen atom transfer reactions from C(sp3)-H bonds of 28 nitrogen-containing heterocycles, oxygen-containing heterocycles, alicyclic amines and cycloalkanes, which were denoted as XH, to the CumO˙ radical, were investigated. The characteristic physical parameter of the substrate, i.e., the thermo-kinetic parameter ΔG≠o(XH), was determined using the kinetic equation [ΔG≠XH/Y = ΔG≠o(XH) + ΔG≠o(Y)] to quantitatively evaluate the H-donating ability of XH. The effects of the substrate structure, substituent attached to the nitrogen atom, and ring size on the H-donating ability were discussed carefully. By comparing the H-donating abilities of cycloalkanes, alicyclic amines and nitrogen/oxygen-containing heterocycles, the influence of the introduction of N, O, or carbonyl groups in the carbon ring on the H-donating ability of C(sp3)-H bond was determined. The electronic, steric and stereo-electronic effects of the groups were also discussed. Herein, we not only quantitatively determined the H-donating ability of the substrate, but also provided ideas for the synthesis of new antioxidants.

6.
RSC Adv ; 13(5): 3295-3305, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756400

ABSTRACT

The H-donating activity of phenol and the H-abstraction activity of phenol radicals have been extensively studied. In this article, the second-order rate constants of 25 hydrogen atom transfer (HAT) reactions between phenols and PINO and DPPH radicals in acetonitrile at 298 K were studied. Thermo-kinetic parameters ΔG ≠o(XH) were obtained using a kinetic equation [ΔG ≠ XH/Y = ΔG ≠o(XH) + ΔG ≠o(Y)]. Bond dissociation free energies ΔG o(XH) were calculated by the iBonD HM method, whose details are available at https://pka.luoszgroup.com/bde_prediction. Intrinsic resistance energies ΔG ≠ XH/X and ΔG ≠o(X) were determined as ΔG ≠o(XH) and ΔG o(XH) were available. ΔG o(XH), ΔG ≠ XH/X, ΔG ≠o(XH) and ΔG ≠o(X) were used to assess the H-donating abilities of the studied phenols and the H-abstraction abilities of phenol radicals in thermodynamics, kinetics and actual HAT reactions. The effect of structures on these four parameters was discussed. The reliabilities of ΔG ≠o(XH) and ΔG ≠o(X) were examined. The difference between the method of determining ΔG ≠ XH/X mentioned in this study and the dynamic nuclear magnetic method mentioned in the literature was studied. Via this study, not only ΔG o(XH), ΔG ≠ XH/X, ΔG ≠o(XH) and ΔG ≠o(X) of phenols could be quantitatively evaluated, but also the structure-activity relationship of phenols is clearly demonstrated. Moreover, it lays the foundation for designing and synthesizing more antioxidants and radicals.

7.
ACS Omega ; 7(44): 39531-39561, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385900

ABSTRACT

Sulfonyl hydrazides are viewed as alternatives to sulfinic acids and their salts or sulfonyl halides, which are broadly used in organic synthesis or work as active pharmaceutical substances. Generally, sulfonyl hydrazides are considered good building blocks and show powerful value in a diverse range of reactions to construct C-S bonds or C-C bonds, and even C-N bonds as sulfur, carbon, or nitrogen sources, respectively. As a profound synthetic tool, the electrosynthesis method was recently used to achieve efficient and green applications of sulfonyl hydrazides. Interestingly, many unique and novel electrochemical syntheses using sulfonyl hydrazides as radical precursors have been developed, including cascade reactions, functionalization of heterocycles, as well as a continuous flow method combining with electrochemical synthesis since 2017. Accordingly, it is necessary to specifically summarize the recent developments of electrosynthesis with only sulfonyl hydrazides as radical precursors to more deeply understand and better design novel electrochemical synthesis reactions. Herein, electrosynthesis research using sulfonyl hydrazides as radical precursors since 2017 is reviewed in detail based on the chemical structures of products and reaction mechanisms.

8.
RSC Adv ; 12(42): 27389-27395, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36275999

ABSTRACT

In this work, the antioxidant abilities of NADH coenzyme analogue BNAH, F420 reduction prototype analogue F420H, vitamin C analogue iAscH-, caffeic acid, and (+)-catechin in acetonitrile in chemical reactions were studied and discussed. Three physical parameters of the antioxidant XH, homolytic bond dissociation free energy ΔG °(XH), self-exchange HAT reaction activation free energy ΔG ≠ XH/X, and thermo-kinetic parameter ΔG ≠°(XH), were used to evaluate the antioxidant ability of XH in thermodynamics, kinetics, and thermo-kinetics. By comparing ΔG °(XH), ΔG ≠ XH/X and ΔG ≠°(XH) of these five bioactive antioxidants to release hydrogen atoms, it is easy to find that iAscH- is the best hydrogen atom donor both thermodynamically and kinetically among these antioxidants. Caffeic acid is the worst hydrogen atom donor thermodynamically, and F420H is the worst hydrogen atom donor kinetically. In addition, the thermodynamic hydride donating abilities of BNAH, F420H, and iAscH- were also discussed, and the order of thermodynamic hydride donating abilities was BNAH > F420H > iAscH-. Four HAT reactions BNAH/DPPH˙, (+)-catechin/DPPH˙, F420H/DPPH˙, and caffeic acid/DPPH˙ in acetonitrile at 298 K were studied by the stopped-flow method. The actual order of H-donating abilities of these four antioxidants in the HAT reactions is consistent with the order predicted by thermo-kinetic parameters. It is feasible to predict accurately the antioxidant abilities of antioxidants using thermo-kinetic parameters.

9.
ACS Omega ; 7(41): 36579-36589, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278082

ABSTRACT

Methylation reaction is a fundamental chemical reaction that plays an important role in the modification of drug molecules, DNA, as well as proteins. This work focuses on seeking potential novel methylation reagents through a systematic investigation of the thermodynamics and reactivity of methyl-substituted organic hydride radical cations (XH•+s). In this work, 45 classical and important XH•+s were designed to investigate the relationship between their structure and reactivity, to find excellent or potential methylation reagents. The Gibbs free energy and activation free energy of XH•+ to release the methyl radical in MeCN at 298.15 and 355 K are calculated with the density functional theory (DFT) method to quantitatively measure the reactivity of XH•+ as a methylation reagent in this work. The relationships between structures and reactivities on XH•+s as methylation reagents are well examined. Since we have calculated the Gibbs free energy and activation free energy of trifluoromethyl-substituted organic hydride compound radical cations (X'H•+) releasing trifluoromethyl radicals in MeCN with the DFT method in our previous work, accordingly, the relationship of thermodynamics and reactivity between X'H•+ releasing trifluoromethyl radical and XH•+ releasing methyl radical is discussed in detail. Excitingly, 4 XH•+s (1H•+, 3H•+∼4H•+, and 44H•+) are found to be excellent methyl radical reagents, while 9 XH•+s (5H•+, 6H•+, 9H•+, 10H•+, 12H•+, 13H•+, 15H•+, 43H•+, and 45H•+) are found to be potential methyl radical reagents in chemical synthesis. The molecular library and reactivity database of novel methylation reagents could be established for synthetic chemists to query and use. Our work may offer a theoretical basis and reference experience for screening different substituted organic hydride compounds (YRHs) as alkylation reagents.

10.
ACS Omega ; 7(30): 26416-26424, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936422

ABSTRACT

In this work, kinetic studies on HEH2, 2-benzylmalononitrile, 2-benzyl-1H-indene-1,3(2H)-dione, 5-benzyl-2,2-dimethyl-1,3-dioxane-4,6-dione, 5-benzyl-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, 2-(9H-fluoren-9-yl)malononitrile, ethyl 2-cyano-2-(9H-fluoren-9-yl)acetate, diethyl 2-(9H-fluoren-9-yl)malonate, and the derivatives (28 XH2) releasing two hydrogen atoms were carried out. The thermokinetic parameters ΔG ⧧° of 28 dihydrogen donors (XH2) and the corresponding hydrogen atom acceptors (XH•) in acetonitrile at 298 K were determined. The abilities of releasing two hydrogen atoms for these organic dihydrogen donors were researched using their thermokinetic parameters ΔG ⧧°(XH2), which can be used not only to compare the H-donating ability of different XH2 qualitatively and quantitatively but also to predict the rates of HAT reactions. Predictions of rate constants for 12 HAT reactions using thermokinetic parameters were determined, and the reliabilities of the predicted results were also examined.

11.
ACS Omega ; 7(29): 25555-25564, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910187

ABSTRACT

The H-abstraction activity of a free radical is a research hotspot and has been extensively studied. In this article, the second-order rate constants of 21 HAT reactions in acetonitrile at 298 K were chosen from several published literature. A kinetic study on the H-abstraction reaction from TEMPOH by a DPPH• radical was carried out. This reaction was researched as an insertion point. By combining this reaction with the 21 HAT reactions in this paper, the thermokinetic parameters of 28 free radicals X and their corresponding antioxidants XH were obtained by the cross-HAT reaction method. The scales of the H-abstraction activities of these 28 oxygen and nitrogen free radicals were determined by using the thermokinetic parameters ΔG ≠o(X). Applications of the thermokinetic parameter ΔG ≠o(X) in assessing the actual H-abstraction activity of a free radical quantitatively and selecting a suitable free radical in scientific research and chemical production were discussed. Predictions of the rate constants by using thermokinetic parameters of reactants were researched, and the reliabilities of the predicted activation free energies of XH/Y reactions were also examined.

12.
J Org Chem ; 87(14): 9357-9374, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35786938

ABSTRACT

In this work, the pKa values of 69 polar alkanes (YH2) in acetonitrile were computed using the method developed by Luo and Zhang in 2020, and representative 69 thermodynamic network cards on 22 elementary steps of YH2 and related polar alkenes (Y) releasing or accepting H2 were naturally established. Potential electron reductants (YH-), hydride reductants (YH-), antioxidants (YH2 and YH-), and hydrogen molecule reductants (YH2) are unexpectedly discovered according to thermodynamic network cards. It is also found that there are great differences between YH2 and common hydrogen molecule reductants (XH2), such as Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydro-phenanthridine (PH2), releasing two hydrogen ions to unsaturated compounds. During the hydrogenation process, XH2 release hydrides first, then the oxidation state XH+ release protons. However, in the case of YH2, YH2 release protons first, then YH- release hydrides. It is the differences on acidic properties of YH2 and XH2 that result in the behavioral and thermodynamic differences on YH2 and XH2 releasing two hydrogen ions (H--H+). The redox mechanisms and behaviors of Y, YH-, and YH2 as electron, hydrogen atom, hydride, and hydrogen molecule donors or acceptors in the chemical reaction are reasonably investigated and discussed in this paper using thermodynamics.


Subject(s)
Protons , Reducing Agents , Alkanes , Hydrogen/chemistry , Thermodynamics
13.
Org Biomol Chem ; 20(14): 2831-2842, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35294516

ABSTRACT

Trifluoromethylation reaction is one of the significant and practical organic chemical reactions, and the design and discovery of novel trifluoromethylation reagents have been attracting more and more attention. Trifluoromethyl-substituted organic hydride compounds (XH) have the potential to be novel trifluoromethylation reagents in organic synthesis due to the favorable tendency of XH˙+ releasing ˙CF3 to form stable aromatic structures in terms of thermodynamics. The key elementary step of the trifluoromethylation is the radical cation (XH˙+) generation by catalysis or single-electron activation releasing ˙CF3 to form a stable aromatic structure, which also provides the thermodynamic driving force of the chemical process. In this work, 47 new trifluoromethylation reagent candidates of XHs were designed and calculated for the Gibbs free energy and activation free energy [ΔG‡RD(XH˙+)] of XH˙+ releasing ˙CF3 using the density functional theory (DFT) method, in order to quantitatively measure the reactivity of XHs as trifluoromethylation reagents, and to establish the molecular library as well as reactivity database of novel trifluoromethylation reagents for synthetic chemists. According to the and ΔG‡RD(XH˙+) values, all the XHs can be reasonably divided into 3 classes, including class 1 (excellent trifluoromethylation reagents), class 2 (potential trifluoromethylation reagents) and class 3 (not trifluoromethylation reagents). To our delight, 15 XHs with a 1,4-dihydropyridine structure and 3 XHs with a 3,4-dihydropyrimidin-2-one structure are identified to be novel excellent and potential trifluoromethylation reagents, respectively, according to their reactivity data. The relationship between the structural features, including methylation, heteroatom, substituents, conjugated structure and so on, and the reactivity of XHs as trifluoromethylation reagents are also discussed in this work. The computation results indicate that trifluoromethyl-substituted 1,4-dihydropyridine compounds and 3,4-dihydropyrimidin-2-one analogues could be possible trifluoromethylation reagents in organic synthesis. This work may provide the theoretical basis and references for discovering organic hydride compounds as novel reagents for trifluoromethylation or other alkylation reactions.


Subject(s)
Models, Theoretical , Organic Chemicals , Catalysis , Indicators and Reagents , Molecular Structure
14.
ACS Omega ; 6(36): 23621-23629, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34549160

ABSTRACT

The purpose of this study is to investigate thermodynamic and kinetic properties on the hydrogen-atom-donating ability of 4-substituted Hantzsch ester radical cations (XRH•+), which are excellent NADH coenzyme models. Gibbs free energy changes and activation free energies of 17 XRH•+ releasing H• [denoted as ΔG HD o(XRH•+) and ΔG HD ≠(XRH•+)] were calculated using density functional theory (DFT) and compared with that of Hantzsch ester (HEH2) and NADH. ΔG HD o(XRH•+) range from 19.35 to 31.25 kcal/mol, significantly lower than that of common antioxidants (such as ascorbic acid, BHT, the NADH coenzyme, and so forth). ΔG HD ≠(XRH•+) range from 29.81 to 39.00 kcal/mol, indicating that XRH•+ spontaneously releasing H• are extremely slow unless catalysts or active intermediate radicals exist. According to the computed data, it can be inferred that the Gibbs free energies and activation free energies of the core 1,4-dihydropyridine radical cation structure (DPH•+) releasing H• [ΔG HD o(DPH•+) and ΔG HD ≠(DPH•+)] should be 19-32 kcal/mol and 29-39 kcal/mol in acetonitrile, respectively. The correlations between the thermodynamic driving force [ΔG HD o(XRH•+)] and the activation free energy [ΔG HD ≠(XRH•+)] are also explored. Gibbs free energy is the important and decisive parameter, and ΔG HD ≠(XRH•+) increases in company with the increase of ΔG HD o(XRH•+), but no simple linear correlations are found. Even though all XRH•+ are judged as excellent antioxidants from the thermodynamic view, the computed data indicate that whether XRH•+ is an excellent antioxidant in reaction is decided by the R substituents in 4-position. XRH•+ with nonaromatic substituents tend to release R• instead of H• to quench radicals. XRH•+ with aromatic substituents tend to release H• and be used as antioxidants, but not all aromatic substituted Hantzsch esters are excellent antioxidants.

15.
J Org Chem ; 85(19): 12535-12543, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32880175

ABSTRACT

In this work, thermodynamic driving forces on 20 possible elementary steps of Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydrophenanthridine (PDH2) releasing two hydrogen atoms or ions were measured or derived from the related thermodynamic data using Hess' law in acetonitrile. Furthermore, thermodynamic network cards of HEH2, BTH2, and PDH2 releasing two hydrogen atoms or ions on 20 elementary steps were first established. Based on the thermodynamic network cards, hydride-donating, hydrogen-atom-donating, and electron-donating abilities of XH2 and XH-, and two hydrogen-atom(ion)-donating abilities of XH2 are discussed in detail. Obviously, the thermodynamic network cards of HEH2, BTH2, and PDH2 not only offer rational data guidance for organic synthetic chemists to properly choose an appropriate reducer among the three reducing agents to hydrogenate various unsaturated compounds but also strongly promote elucidatation of the detailed hydrogenation mechanisms.

16.
RSC Adv ; 10(52): 31425-31434, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-35520635

ABSTRACT

Recently, a variety of 4-substituted Hantzsch esters (XRH) with different structures have been widely researched as alkylation reagents in chemical reactions, and the key step of the chemical process is the elementary step of XRH˙+ releasing R˙. The purpose of this work is to investigate the essential factors which determine whether or not an XRH is a great alkylation reagent using density functional theory (DFT). This study shows that the ability of an XRH acting as an alkylation reagent can be reasonably estimated by its ΔG ≠ RD(XRH˙+) value, which can be conveniently obtained through DFT computations. Moreover, the data also show that ΔG ≠ RD(XRH˙+) has no simple correlation with the structural features of XRH, including the electronegativity of the R substituent group and the magnitude of steric resistance; therefore, it is difficult to judge whether an XRH can provide R˙ solely by experience. Thus, these results are helpful for chemists to design 4-substituted Hantzsch esters (XRH) with novel structures and to guide the application of XRH as a free radical precursor in organic synthesis.

17.
J Phys Chem A ; 120(11): 1779-99, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26938149

ABSTRACT

In this work, kinetic isotope effect (KIEself) values of 68 hydride self-exchange reactions, XH(D) + X(+) → X(+) + XH(D), in acetonitrile at 298 K were determined using a new experimental method. KIE values of 4556 hydride cross transfer reactions, XH(D) + Y(+) → X(+) + YH(D), in acetonitrile were estimated from the 68 determined KIEself values of hydride self-exchange reactions using a new KIE relation formula derived from Zhu's kinetic equation and the reliability of the estimations was verified using different experimental methods. A new KIE kinetic model to explain and predict KIE values was developed according to Zhu's kinetic model using two different Morse free energy curves instead of one Morse free energy curve in the traditional KIE theories to describe the free energy changes of X-H bond and X-D bond dissociation in chemical reactions. The most significant contribution of this paper to KIE theory is to build a new KIE kinetic model, which can be used to not only uniformly explain the various (normal, enormous and inverse) KIE values but also safely prodict KIE values of various chemical reactions.

18.
Org Biomol Chem ; 13(22): 6255-68, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25962496

ABSTRACT

32 F420 coenzyme models with alkylation of the three different N atoms (N1, N3 and N10) in the core structure (XFH(-)) were designed and synthesized and the thermodynamic driving forces (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the 32 XFH(-) releasing hydride ions, hydrogen atoms and electrons, the thermodynamic driving forces of the 32 XFH˙ releasing protons and hydrogen atoms and the thermodynamic driving forces of XF(-)˙ releasing electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The effects of the methyl group at N1, N3 and N10 and a negative charge on N1 and N10 atoms on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were examined; the results show that seating arrangements of the methyl group and the negative charge have remarkably different effects on the thermodynamic properties of the F420 coenzyme models and their related reaction intermediates. The effects of the substituents at C7 and C8 on the six thermodynamic driving forces of the F420 coenzyme models and their related reaction intermediates were also examined; the results show that the substituents at C7 and C8 have good Hammett linear free energy relationships with the six thermodynamic parameters. Meanwhile, a reasonable determination of possible reactions between members of the F420 family and NADH family in vivo was given according to a thermodynamic analysis platform constructed using the elementary step thermodynamic parameter of F420 coenzyme model 2FH(-) and NADH model MNAH releasing hydride ions in acetonitrile. The information disclosed in this work can not only fill a gap in the chemical thermodynamics of F420 coenzyme models as a class of very important organic sources of electrons, hydride ions, hydrogen atoms and protons, but also strongly promote the fast development of the chemistry and applications of F420 coenzyme.


Subject(s)
Acetonitriles/chemistry , Electrons , Hydrogen/chemistry , Protons , Riboflavin/analogs & derivatives , Thermodynamics , Acetonitriles/metabolism , Hydrogen/metabolism , Ions/chemistry , Ions/metabolism , Models, Molecular , Molecular Structure , Riboflavin/chemistry , Riboflavin/metabolism
19.
J Org Chem ; 78(14): 7154-68, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23790107

ABSTRACT

A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.


Subject(s)
Acetonitriles/chemistry , Alkenes/chemistry , Hydrogen/chemistry , Thermodynamics , Electrons , Molecular Structure , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...