Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36285158

ABSTRACT

Purpose: This study focused on determining the anticancer effect of paeoniflorin and geniposide mixture (PFGS) combined with sorafenib (Sor) in hepatocellular carcinoma (HCC) and, in particular, whether PFGS increases the antitumor effect of Sor by modulating the NF-κB/HIF-2α/SerpinB3 pathway. Methods: The H22 hepatoma tumor-bearing mouse model was treated with PFGS, Sor, and a combination of the two drugs for 12 days. The effects of PFGS combined with Sor on tumor growth and apoptosis and the expression of NF-κB, HIF-2α, and SerpinB3 in tumor tissue were assessed. In addition, Sor-resistant hepatoma cells were treated with PFGS, Sor, and the combination of the two drugs in vitro. The effects of PFGS combined with Sor on cell proliferation and invasion and the protein expression of NF-κB p65, HIF-2α, and SerpinB3 were investigated. Results: PFGS combined with Sor treatment synergistically inhibited tumor growth in HCC tumor-bearing mice. Immunostaining showed that PFGS combined with Sor treatment significantly decreased the expression of Ki-67 and obviously induced apoptosis in the tumor compared with a single treatment. Similarly, PFGS combined with Sor treatment significantly downregulated the expression of NF-κB, HIF-2α, and SerpinB3 in the tumor compared with a single treatment. Additionally, PFGS combined with Sor markedly inhibited cell proliferation and invasion and activation of the NF-κB/HIF-2α/SerpinB3 pathway in Sor-resistant hepatoma cells compared with a single treatment. Conclusion: Our study demonstrated that PFGS synergistically increased the antiliver cancer effects of Sor by lowering activation of the NF-κB/HIF-2α/SerpinB3 pathway. These findings provided a scientific foundation for clinical studies using PFGS and Sor to treat liver cancer.

2.
Front Plant Sci ; 13: 845107, 2022.
Article in English | MEDLINE | ID: mdl-35386672

ABSTRACT

As one of the serious environmental problems worldwide, acid rain (AR) has always caused continuous damage to the forestry ecosystem. Studies have shown that AR can leach calcium ions from plants and soil. Calcium (Ca) is also a crucial regulator of the plant stress response, whereas there are few reports on how Ca regulates the response of AR-resistant woody plants to AR stress. In this study, by setting different exogenous Ca levels, we study the physiological and molecular mechanism of Ca in regulating the Taxus wallichiana var. mairei response to AR stress. Our results showed that low Ca level leads to photosynthesis, and antioxidant defense system decreases in T. wallichiana var. mairei leaves; however, these negative effects could be reversed at high Ca level. In addition, proteomic analyses identified 44 differentially expressed proteins in different Ca level treatments of T. wallichiana var. mairei under AR stress. These proteins were classified into seven groups, which include metabolic process, photosynthesis and energy pathway, cell rescue and defense, transcription and translation, protein modification and degradation, signal transduction, etc. Furthermore, the study found that low Ca level leads to an obvious increase of Ca-related gene expression under AR stress in T. wallichiana var. mairei using qRT-PCR analyses and however can be reversed at high Ca level. These findings would enrich and extend the Ca signaling pathways of AR stress in AR-resistant woody plants and are expected to have important theoretical and practical significance in revealing the mechanism of woody plants tolerating AR stress and protecting forestry ecosystem in soil environment under different Ca levels.

3.
J Proteome Res ; 15(1): 216-28, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26616104

ABSTRACT

Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species.


Subject(s)
Calcium/toxicity , Liquidambar/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Acid Rain , Gene Expression , Liquidambar/drug effects , Metabolic Networks and Pathways , Plant Leaves/drug effects , Plant Proteins/genetics , Proteome/genetics , Proteomics , Stress, Physiological
4.
J Zhejiang Univ Sci ; 4(1): 86-94, 2003.
Article in English | MEDLINE | ID: mdl-12656349

ABSTRACT

Human acidic and basic fibroblast growth factors (aFGF and bFGF) are classic and well characterized members of the heparin-binding growth factor family. Heparin is generally thought to play an extremely important role in regulating aFGF and bFGF bioactivities through its strong binding with them. In order to unravel the mechanism of the interactions between heparin and FGFs, and evaluate the importance of heparin sulfate groups' binding with FGFs, surface plasmon resonance analyses were performed using IAsys Cuvettes System. Heparin and its regioselectively desulfated derivatives were immobilized on the cuvettes. aFGF and bFGF solutions with different concentrations were pipetted into the cuvettes and the progress of the interaction was monitored in real-time by Windows-based software, yielding kinetic and equilibrium constants for these interactions. In addition, in order to reduce the delicate difference among the cuvettes, inhibition analyses of mixture of FGFs and immobilized native heparin by modified heparins were also done. The data from these two methods were similar, indicating that all sulfate groups at 2-O, 6-O and N- in heparin were required for the binding to aFGF; and that their contribution to the binding was in the order 2-O, N- and 6-O-sulfate group. In contrast, definite contribution of the 6-O-sulfate group to the binding with bFGF was most apparent, while the other two sulfate groups appeared to be necessary in the order 2-O and N-sulfate group. These methods established here can be used for analysing the effect of sulfate groups in heparin on the binding with other human FGF members or other heparin-binding proteins.


Subject(s)
Fibroblast Growth Factors/metabolism , Heparin/metabolism , Heparitin Sulfate/metabolism , Adsorption , Animals , Binding, Competitive , Cattle , Fibroblast Growth Factors/chemistry , Heparin/chemistry , Heparitin Sulfate/chemistry , Humans , Kinetics , Models, Biological , Protein Binding , Recombinant Proteins/metabolism , Sodium Chloride/pharmacology , Stereoisomerism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...