Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732452

ABSTRACT

Over the years, the changes in the agriculture industry have been inevitable, considering the need to feed the growing population. As the world population continues to grow, food security has become challenged. Resources such as arable land and freshwater have become scarce due to quick urbanization in developing countries and anthropologic activities; expanding agricultural production areas is not an option. Environmental and climatic factors such as drought, heat, and salt stresses pose serious threats to food production worldwide. Therefore, the need to utilize the remaining arable land and water effectively and efficiently and to maximize the yield to support the increasing food demand has become crucial. It is essential to develop climate-resilient crops that will outperform traditional crops under any abiotic stress conditions such as heat, drought, and salt, as well as these stresses in any combinations. This review provides a glimpse of how plant breeding in agriculture has evolved to overcome the harsh environmental conditions and what the future would be like.

2.
Food Funct ; 15(8): 4490-4502, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38566566

ABSTRACT

High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of Torreya grandis seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear. In the present investigation, we observed that SC modulates the OPG/RANKL/RANK signaling pathway by modifying the lipid metabolic state and decreasing inflammation in mice. In turn, it could balance bone resorption and formation as well as calcium and phosphorus levels, enhance bone strength and bone mineral density (BMD), and improve its microstructure. In addition, SC could inhibit fat vacuoles in bone, reverse the phenomenon of reduced numbers and poor continuity of bone trabeculae, and promote orderly arrangement of collagen fibers and cartilage repair. This study provides some theoretical basis for SC as a dietary intervention agent to enhance bone nutrition.


Subject(s)
Bone Density , Diet, High-Fat , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Mice , Male , Bone Density/drug effects , Bone and Bones/drug effects , Bone and Bones/metabolism , RANK Ligand/metabolism , Osteoprotegerin/metabolism , Signal Transduction/drug effects
3.
Mol Nutr Food Res ; : e2300453, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389187

ABSTRACT

To explore the potential mechanism of action of Tegillarca granosa polysaccharide (TGP) in treating nonalcoholic fatty liver disease (NAFLD), the study conducts in vivo experiments using male C57BL/6 mice fed a high-fat diet while administering TGP for 16 weeks. The study measures body weight, liver weight, serum biochemical markers, pathological histology, liver lipid accumulation, oxidative stress and inflammation-related factors, lipid synthesis and metabolism-related gene and protein expression, and the composition and abundance of intestinal flora. Additionally, short-chain fatty acid (SCFAs) content and the correlation between intestinal flora and environmental factors are measured. The results show that TGP effectively reduces excessive hepatic lipid accumulation, dyslipidemia, abnormal liver function, and steatosis in the mice with NAFLD. Moreover, TGP effectively regulates intestinal flora disorder, increases the diversity of intestinal flora, and affects the relative abundance of specific bacteria while also increasing the content of SCFAs. These findings provide a basis for exploring the regulatory effect of T. granosa polysaccharide on NAFLD based on intestinal flora and highlight its potential as a natural liver nutraceutical.

4.
J Sci Food Agric ; 104(7): 3902-3912, 2024 May.
Article in English | MEDLINE | ID: mdl-38264943

ABSTRACT

BACKGROUND: Cyclophosphamide (Cy) is a frequently used chemotherapeutic drug, but long-term Cy treatment can cause immunosuppression and intestinal mucosal damage. The intestinal mucosal barrier and gut flora play important roles in regulating host metabolism, maintaining physiological functions and protecting immune homeostasis. Dysbiosis of the intestinal flora affects the development of the intestinal microenvironment, as well as the development of various external systemic diseases and metabolic syndrome. RESULTS: The present study investigated the influence of sciadonic acid (SA) on Cy-induced immunosuppression in mice. The results showed that SA gavage significantly alleviated Cy-induced immune damage by improving the immune system organ index, immune response and oxidative stress. Moreover, SA restored intestinal morphology, improved villus integrity and activated the nuclear factor κB signaling pathway, stimulated cytokine production, and reduced serum lipopolysaccharide (LPS) levels. Furthermore, gut microbiota analysis indicated that SA increased t beneficial bacteria (Alistipes, Lachnospiraceae_NK4A136_group, Rikenella and Odoribacter) and decreased pathogenic bacteria (norank-f-Oscillospiraceae, Ruminococcus and Desulfovibrio) to maintain intestinal homeostasis. CONCLUSION: The present study provided new insights into the SA regulation of intestinal flora to enhance immune responses. © 2024 Society of Chemical Industry.


Subject(s)
Arachidonic Acids , Gastrointestinal Microbiome , Animals , Mice , Immunosuppression Therapy , Bacteroidetes , Cyclophosphamide/adverse effects , Immunity
5.
Front Plant Sci ; 14: 1110622, 2023.
Article in English | MEDLINE | ID: mdl-37332720

ABSTRACT

Climate change has increased the overall impact of abiotic stress conditions such as drought, salinity, and extreme temperatures on plants. Abiotic stress adversely affects the growth, development, crop yield, and productivity of plants. When plants are subjected to various environmental stress conditions, the balance between the production of reactive oxygen species and its detoxification through antioxidant mechanisms is disturbed. The extent of disturbance depends on the severity, intensity, and duration of abiotic stress. The equilibrium between the production and elimination of reactive oxygen species is maintained due to both enzymatic and non-enzymatic antioxidative defense mechanisms. Non-enzymatic antioxidants include both lipid-soluble (α-tocopherol and ß-carotene) and water-soluble (glutathione, ascorbate, etc.) antioxidants. Ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) are major enzymatic antioxidants that are essential for ROS homeostasis. In this review, we intend to discuss various antioxidative defense approaches used to improve abiotic stress tolerance in plants and the mechanism of action of the genes or enzymes involved.

6.
Plants (Basel) ; 12(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375879

ABSTRACT

Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.

7.
Food Funct ; 14(6): 2870-2880, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36883533

ABSTRACT

Obesity has been reported to be associated with dysbiosis of gut microbiota. Sciadonic acid (SC) is one of the main functional components of Torreya grandis "Merrillii" seed oil. However, the effect of SC on high-fat diet (HFD)-induced obesity has not been elucidated. In this study, we evaluated the effects of SC on lipid metabolism and the gut flora in mice fed with a high-fat diet. The results revealed that SC activates the PPARα/SREBP-1C/FAS signaling pathway and reduces the levels of total cholesterol (TC), triacylglycerols (TG), and low-density lipoprotein cholesterol (LDL-C), but increases the level of high-density lipoprotein cholesterol (HDL-C) and inhibits weight gain. Among them, high-dose SC was the most effective; the TC, TG and LDL-C levels were reduced by 20.03%, 28.40% and 22.07%, respectively; the HDL-C level was increased by 8.55%. In addition, SC significantly increased glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) levels by 98.21% and 35.17%, respectively, decreased oxidative stress, and ameliorated the pathological damage to the liver caused by a high-fat diet. Furthermore, SC treatment altered the composition of the intestinal flora, promoting the relative abundance of beneficial bacteria such as Lactobacillus and Bifidobacterium, while simultaneously decreasing the relative abundance of potentially harmful bacteria such as Faecalibaculum, norank_f_Desulfovibrionaceae, and Romboutsia. Spearman's correlation analysis indicated that the gut microbiota was associated with SCFAs and biochemical indicators. In summary, our results suggested that SC can improve lipid metabolism disorders and regulate the gut microbial structure.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Diet, High-Fat/adverse effects , Cholesterol, LDL , Obesity/etiology , Obesity/microbiology , Triglycerides/pharmacology , Mice, Inbred C57BL , Lipid Metabolism
8.
Plant Physiol Biochem ; 196: 1122-1136, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36907700

ABSTRACT

Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.


Subject(s)
Biological Phenomena , Pinus , Calcium/metabolism , Pinus/genetics , Pinus/metabolism , Proteomics/methods , Seedlings/metabolism , Growth and Development
9.
J Sci Food Agric ; 103(7): 3353-3366, 2023 May.
Article in English | MEDLINE | ID: mdl-36750436

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) mellitus is a major metabolic disease, and its incidence and lethality have increased significantly in recent years, making it a serious threat to human health. Among numerous previous studies, polysaccharides have been shown to alleviate the adverse effects of T2D, but there are still problems such as insufficient analysis and poor understanding of the mechanisms by which polysaccharides, especially those of marine origin, regulate T2D. METHODS: In this study, we used multiple allosteric approaches to further investigate the regulatory effects of mussel polysaccharides (MPs) on T2D and gut microbiota disorders in mice by identifying changes in genes, proteins, metabolites and target organs associated with glucolipid metabolism using an animal model of T2D fed with high-fat diets, and to explore the underlying molecular mechanisms. RESULTS: After MP intervention, serum levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and high-density lipoprotein cholesterol (HDL-C) were up-regulated, and blood glucose and lipid levels were effectively reduced in T2D mice. Activation of signaling molecules related to the upstream and downstream of the insulin PI3K/Akt signaling pathway reduced hepatic insulin resistance. The relative abundance of short-chain fatty acid (SCFA)-producing bacteria (including Akkermansia, Siraeum Eubacterium and Allobaculum) increased and harmful desulfurizing Vibrio decreased. In addition, the levels of SCFAs were increased. CONCLUSION: These results suggest that MP can increase SCFA levels by altering the abundance of intestinal flora, thereby activating the PI3K/Akt signaling pathway and exerting hypoglycemic effects. © 2023 Society of Chemical Industry.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Mice , Humans , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/chemistry , Insulin , Polysaccharides/chemistry , Diet, High-Fat/adverse effects
10.
Front Plant Sci ; 14: 1046719, 2023.
Article in English | MEDLINE | ID: mdl-36818865

ABSTRACT

Olive suffers from cold damage when introduced to high-latitude regions from its native warm climes. Therefore, this study aims to improve the adaption of olive to climates in which it is cold for part of the year. The phenotype, physiological performance, nutrient content, and gene expression of olive leaves (from two widely planted cultivars) were examined after cultivation in normal and cold stress conditions. The results showed that the cold-tolerant cultivar possessed stronger photosynthesis efficiency and higher anti-oxidase activity after cold treatment than the cold-sensitive cultivar. Alteration of gene expression and metabolites in the amino acid metabolism, glycerolipid metabolism, diterpenoid biosynthesis, and oleuropein metabolism pathways played an important role in the cold responses of olive. Furthermore, the construction of the network of genes for ubiquitination and metabolites suggested that polyubiquitination contributes most to the stable physiology of olive under cold stress. Altogether, the results of this study can play an important role in helping us to understand the cold hardiness of olive and screen cold-resistant varieties for excellent quality and yield.

11.
Front Plant Sci ; 13: 1011985, 2022.
Article in English | MEDLINE | ID: mdl-36212298

ABSTRACT

Abiotic stresses are major limiting factors that pose severe threats to agricultural production. Conventional breeding has significantly improved crop productivity in the last century, but traditional breeding has reached its maximum capacity due to the multigenic nature of abiotic stresses. Alternatively, biotechnological approaches could provide new opportunities for producing crops that can adapt to the fast-changing environment and still produce high yields under severe environmental stress conditions. Many stress-related genes have been identified and manipulated to generate stress-tolerant plants in the past decades, which could lead to further increase in food production in most countries of the world. This review focuses on the recent progress in using transgenic technology and gene editing technology to improve abiotic stress tolerance in plants, and highlights the potential of using genetic engineering to secure food and fiber supply in a world with an increasing population yet decreasing land and water availability for food production and fast-changing climate that will be largely hostile to agriculture.

12.
Article in English | MEDLINE | ID: mdl-36285158

ABSTRACT

Purpose: This study focused on determining the anticancer effect of paeoniflorin and geniposide mixture (PFGS) combined with sorafenib (Sor) in hepatocellular carcinoma (HCC) and, in particular, whether PFGS increases the antitumor effect of Sor by modulating the NF-κB/HIF-2α/SerpinB3 pathway. Methods: The H22 hepatoma tumor-bearing mouse model was treated with PFGS, Sor, and a combination of the two drugs for 12 days. The effects of PFGS combined with Sor on tumor growth and apoptosis and the expression of NF-κB, HIF-2α, and SerpinB3 in tumor tissue were assessed. In addition, Sor-resistant hepatoma cells were treated with PFGS, Sor, and the combination of the two drugs in vitro. The effects of PFGS combined with Sor on cell proliferation and invasion and the protein expression of NF-κB p65, HIF-2α, and SerpinB3 were investigated. Results: PFGS combined with Sor treatment synergistically inhibited tumor growth in HCC tumor-bearing mice. Immunostaining showed that PFGS combined with Sor treatment significantly decreased the expression of Ki-67 and obviously induced apoptosis in the tumor compared with a single treatment. Similarly, PFGS combined with Sor treatment significantly downregulated the expression of NF-κB, HIF-2α, and SerpinB3 in the tumor compared with a single treatment. Additionally, PFGS combined with Sor markedly inhibited cell proliferation and invasion and activation of the NF-κB/HIF-2α/SerpinB3 pathway in Sor-resistant hepatoma cells compared with a single treatment. Conclusion: Our study demonstrated that PFGS synergistically increased the antiliver cancer effects of Sor by lowering activation of the NF-κB/HIF-2α/SerpinB3 pathway. These findings provided a scientific foundation for clinical studies using PFGS and Sor to treat liver cancer.

13.
Plants (Basel) ; 11(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684188

ABSTRACT

Olive (Olea europaea L.) is a world-famous woody oil tree and popular for redundant unsaturated fatty acids. Fatty acid desaturase (FAD) genes are responsible for fatty acid desaturation and stress regulation but have not yet been identified in olive at the whole genome level. This study identified 40 and 27 FAD genes in the cultivated olive O. europaea cv. Farga and the wild olive O. europaea var. Sylvestris, respectively. Phylogenetic analysis showed that all the FAD genes could be classified into the soluble FAB2/SAD clade and membrane-bound clade, including ADS/FAD5, DES, FAD4, SLD, ω-6 and ω-3, with the high consistency of subcellular localization, motif composition and exon-intron organization in each group. FAD genes in olive showed the diverse functional differentiation in morphology of different tissues, fruit development and stress responses. Among them, OeFAB2.8 and OeFAD2.3 were up-regulated and OeADS.1, OeFAD4.1 and OeFAD8.2 were down-regulated under the wound, Verticillium dahliae and cold stresses. This study presents a comprehensive analysis of the FAD genes at the whole-genome level in olives and will provide guidance for the improvement of oil quality or stress tolerance of olive trees.

14.
NPJ Sci Food ; 6(1): 26, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35478196

ABSTRACT

This study aimed to investigate the protective effect of mussel polysaccharide (MP) on cyclophosphamide (Cy)-induced intestinal mucosal immunosuppression and microbial dysbiosis in mice. MP was shown to stimulate secretion of cytokines (SIgA, IL-2, IF-γ, IL-4, IL-10) and production of transcription factors (occludin, claudin-1, ZO-1, mucin-2, IL-2, IF-γ, IL-4, IL-10). Key proteins (p-IκB-α, p-p65) of the NF-κB pathway were upregulated after MP administration. SCFAs levels, which were decreased after the Cy treatment, were improved after treatment with MP. Furthermore, 16 S rRNA sequencing data of fecal samples revealed, through α-diversity and ß-diversity analysis, that MP improved microbial community diversity and modulate the overall composition of gut microbiota. Taxonomic composition analysis showed that MP increased the abundance of probiotics species (Lactobacillus) and decreased the proportion of pathogenic species (Desulfovibrio). These findings suggested that MP has a potential immunomodulatory activity on the immunosuppressive mice.

15.
Front Plant Sci ; 13: 845107, 2022.
Article in English | MEDLINE | ID: mdl-35386672

ABSTRACT

As one of the serious environmental problems worldwide, acid rain (AR) has always caused continuous damage to the forestry ecosystem. Studies have shown that AR can leach calcium ions from plants and soil. Calcium (Ca) is also a crucial regulator of the plant stress response, whereas there are few reports on how Ca regulates the response of AR-resistant woody plants to AR stress. In this study, by setting different exogenous Ca levels, we study the physiological and molecular mechanism of Ca in regulating the Taxus wallichiana var. mairei response to AR stress. Our results showed that low Ca level leads to photosynthesis, and antioxidant defense system decreases in T. wallichiana var. mairei leaves; however, these negative effects could be reversed at high Ca level. In addition, proteomic analyses identified 44 differentially expressed proteins in different Ca level treatments of T. wallichiana var. mairei under AR stress. These proteins were classified into seven groups, which include metabolic process, photosynthesis and energy pathway, cell rescue and defense, transcription and translation, protein modification and degradation, signal transduction, etc. Furthermore, the study found that low Ca level leads to an obvious increase of Ca-related gene expression under AR stress in T. wallichiana var. mairei using qRT-PCR analyses and however can be reversed at high Ca level. These findings would enrich and extend the Ca signaling pathways of AR stress in AR-resistant woody plants and are expected to have important theoretical and practical significance in revealing the mechanism of woody plants tolerating AR stress and protecting forestry ecosystem in soil environment under different Ca levels.

16.
Front Nutr ; 9: 1053348, 2022.
Article in English | MEDLINE | ID: mdl-36618687

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia. The aim of this work was to investigate the effect of sciadonic acid (SA) on disorders of glucolipid metabolism and intestinal flora imbalance and to further investigate its potential molecular mechanism of anti-diabetes. The experimental data indicated that SA could alleviate hyperlipidemia, insulin resistance, oxidative stress, the inflammatory response, repair liver function damage, and promote glycogen synthesis caused by T2DM. SA could also activate the PI3K/AKT/GLUT-2 signaling pathway, promote glucose metabolism gene expression, and maintain glucose homeostasis. Furthermore, 16S rRNA analysis revealed that SA could reduce the Firmicutes/Bacteroidota (F/B) ratio; promote norank_f__Muribaculaceae, Allobaculum, Akkermansia, and Eubacterium_siraeum_group proliferation; increase the levels of major short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, and butyric acid; and maintain the homeostasis of the intestinal flora. In conclusion, these results suggested that SA could reshape the structural composition of intestinal microbes, activate the PI3K/AKT/GLUT2 pathway, improve insulin resistance, and decrease blood glucose levels.

17.
PLoS One ; 16(11): e0258657, 2021.
Article in English | MEDLINE | ID: mdl-34735479

ABSTRACT

Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.


Subject(s)
Camellia sinensis/genetics , Genome, Plant/genetics , MAP Kinase Kinase Kinases/genetics , Phylogeny , Arabidopsis/genetics , Chromosomes, Plant/genetics , Conserved Sequence/genetics , Gene Duplication/genetics , Gene Expression Regulation, Plant/genetics , MAP Kinase Kinase Kinases/classification , MAP Kinase Signaling System/genetics , Multigene Family/genetics , Oryza/genetics , Sequence Alignment , Stress, Physiological/genetics
18.
Plant Physiol Biochem ; 169: 81-91, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34773805

ABSTRACT

Ethylene is a major plant hormone that regulates plant growth, development, and defense responses to biotic and abiotic stresses. The major pieces of the ethylene signaling pathway have been put together, although several details still need to be elucidated. For instance, the phosphorylation and dephosphorylation processes controlling the ethylene responses are poorly understood and need to be further explored. The type 2A protein phosphatase (PP2A) was suggested to play an important role in the regulation of ethylene biosynthesis, where the A1 subunit of PP2A was shown to be involved in the regulation of the rate-limiting enzyme of the ethylene biosynthetic pathway. However, whether other subunits of PP2A play roles in the ethylene signal transduction pathway is yet to be answered. In this study, we demonstrate that a B subunit, PP2A-B'ζ, positively regulates plant germination and seedling development, as a pp2a-b'ζ mutant is very sensitive to ethylene treatment. Furthermore, PP2A-B'ζ interacts with and stabilizes the kinase CTR1 (Constitutive Triple Response 1), a key enzyme in the ethylene signal transduction pathway, and like CTR1, PP2A-B'ζ negatively regulates ethylene signaling in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ethylenes , Phosphorylation , Plant Growth Regulators , Protein Phosphatase 2/metabolism
19.
Plant Biotechnol J ; 19(3): 462-476, 2021 03.
Article in English | MEDLINE | ID: mdl-32902115

ABSTRACT

Abiotic stresses such as extreme temperatures, water-deficit and salinity negatively affect plant growth and development, and cause significant yield losses. It was previously shown that co-overexpression of the Arabidopsis vacuolar pyrophosphatase gene AVP1 and the rice SUMO E3 ligase gene OsSIZ1 in Arabidopsis significantly increased tolerance to multiple abiotic stresses and led to increased seed yield for plants grown under single or multiple abiotic stress conditions. It was hypothesized that there might be synergistic effects between AVP1 overexpression and OsSIZ1 overexpression, which could lead to substantially increased yields if these two genes are co-overexpressed in real crops. To test this hypothesis, AVP1 and OsSIZ1 were co-overexpressed in cotton, and the impact of OsSIZ1/AVP1 co-overexpression on cotton's performance under normal growth and multiple stress conditions were analysed. It was found that OsSIZ1/AVP1 co-overexpressing plants performed significantly better than AVP1-overexpressing, OsSIZ1-overexpressing and wild-type cotton plants under single, as well as under multiple stress conditions in laboratory and field conditions. Two field studies showed that OsSIZ1/AVP1 co-overexpressing plants produced 133% and 81% more fibre than wild-type cotton in the dryland conditions of West Texas. This research illustrates that co-overexpression of AVP1 and OsSIZ1 is a viable strategy for engineering abiotic stress-tolerant crops and could substantially improve crop yields in low input or marginal environments, providing a solution for food security for countries in arid and semiarid regions of the world.


Subject(s)
Arabidopsis Proteins , Droughts , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Hot Temperature , Inorganic Pyrophosphatase/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Salinity , Stress, Physiological
20.
Front Plant Sci ; 12: 777884, 2021.
Article in English | MEDLINE | ID: mdl-34987532

ABSTRACT

Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.

SELECTION OF CITATIONS
SEARCH DETAIL
...