Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ISA Trans ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38972822

ABSTRACT

This article delves into the intricate challenge of implementing prescribed-time command filtered control in the context of uncertain nonlinear systems. Firstly, a prescribed-time function is defined to lay the groundwork for subsequent controller design. Subsequently, a novel prescribed-time command Filtered controller is proposed for high-order nonlinear systems featuring unknown parameters. This controller guarantees swift error convergence within a predefined time range, with the added capability of periodic error convergence to zero during subsequent controller operations. A pivotal innovation in this study lies in the controller's design, which remains unaffected by the system's initial conditions. This unique feature enables the prescribed time to be flexibly set within physical constraints, diverging markedly from conventional finite-time control theory. Theoretical analysis has conclusively shown that the controller achieves full-state tracking error convergence within the specified time frame. The efficacy of the research findings is substantiated through two simulation cases, underscoring a substantial contribution to the refinement and adaptability of nonlinear system control theory.

2.
Entropy (Basel) ; 26(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38785658

ABSTRACT

As one of the most vital energy conversation systems, the safe operation of wind turbines is very important; however, weak fault and time-varying speed may challenge the conventional monitoring strategies. Thus, an entropy-aided meshing-order modulation method is proposed for detecting the optimal frequency band, which contains the weak fault-related information. Specifically, the variable rotational frequency trend is first identified and extracted based on the time-frequency representation of the raw signal by constructing a novel scaling-basis local reassigning chirplet transform (SLRCT). A new entropy-aided meshing-order modulation (EMOM) indicator is then constructed to locate the most sensitive modulation frequency area according to the extracted fine speed trend with the help of order tracking technique. Finally, the raw vibration signal is bandpass filtered via the corresponding optimal frequency band with the highest EMOM indicator. The order components resulting from the weak fault can be highlighted to accomplish weak fault detection. The effectiveness of the proposed EMOM analysis-based method has been tested using the experimental data of three different gear fault types of different fault levels from a planetary test rig.

3.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37125855

ABSTRACT

Resistive voltage dividers (RVDs) are commonly used as AC attenuation networks in measurement circuits; however, their high-frequency gain is always disturbed by nasty parasitic elements and deviates significantly from the desired design value. This paper proposes a closed-loop adjustment technique for adjusting the frequency response flatness of wideband RVDs (WRVDs). In the proposed adjustment scheme, the frequency response flatness of the WRVD is determined by a voltage-controlled compensation capacitor, whereas the corresponding control voltage is provided by a digital potentiometer. The settling time and the adjustment error of the loop are analyzed to evaluate the adjustment performance. To verify the concept, the adjustment loop is incorporated into a 100:1 WRVD for demonstration. Final experiments show that the proposed technique improves gain flatness by 81 times compared with uncompensated flatness, with 1.15% up to 2 MHz, and that the compensated voltage divider has an excellent linearity of 36 ppm up to 100 V.

4.
Materials (Basel) ; 16(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176431

ABSTRACT

Nonlinear ultrasonic guided waves have attracted increasing attention in the field of structural health monitoring due to their high sensitivity and long detection distance. In practical applications, the temperature of the tested structure will inevitably change, so it is essential to evaluate the effects of temperature on nonlinear ultrasonic guided waves. In this paper, an analytical approach is proposed to obtain the response law of nonlinear guided waves to temperature based on the semi-analytical finite element (SAFE) method. The plate structure is investigated as a demonstration example, and the corresponding simulation analysis and experimental verification are carried out. The results show that the variation trends of different cumulative second harmonic modes with temperature are distinct, and their amplitudes monotonically increase or decrease with the continuously rising temperature. Therefore, in the applications with nonlinear ultrasonic guided waves, it is necessary to predict the changing trend of selected cumulative second harmonics under the action of temperature and compensate the result for the influence of temperature. The methods and conclusions presented in this paper are also applicable to other types of structures and have general practicality.

SELECTION OF CITATIONS
SEARCH DETAIL
...