Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Addict Biol ; 29(2): e13370, 2024 02.
Article in English | MEDLINE | ID: mdl-38353028

ABSTRACT

N-Isopropylbenzylamine (N-ipb), a chain isomer of methamphetamine (METH) with similar physical properties, has been used as a substitute for METH in seized drug samples. However, the abuse potential of N-ipb remains unclear. Therefore, this study aimed to evaluate the abuse potential of N-ipb in comparison to METH, by using conditioned place preference (CPP), locomotor sensitization and intravenous self-administration tests. The results showed that N-ipb at a dose of 3 mg·kg-1 significantly induced CPP in mice, which was comparable to the effect of METH at 1 mg·kg-1 . Either acute or repeated N-ipb injections (1 or 3 mg·kg-1 ) failed to raise the locomotor activity. However, acute treatment with 10 mg·kg-1 N-ipb elevated the locomotor activity compared with saline, while chronic injection of 10 mg·kg-1 N-ipb induced a delayed and attenuated sensitization compared with 1 mg·kg-1 METH. Rats could acquire N-ipb self-administration at a dose of 1 mg·kg-1 ·infusion-1 , and a typical inverted U-shaped dose-response curve was obtained for N-ipb. The mean dose of N-ipb that maintained the maximum response was greater than that of METH, indicating that N-ipb is less potent for reinforcement than METH. In the economic behavioural analysis, comparison of essential values derived from the demand elasticity revealed that N-ipb is less efficacy as a reinforcer than METH. The present data demonstrate that N-ipb functions as a reinforcer and has a potential for abuse. However, the potency of psychomotor stimulation and the reinforcing effectiveness of N-ipb are lower than those of METH.


Subject(s)
Amines , Central Nervous System Stimulants , Methamphetamine , Mice , Rats , Animals , Central Nervous System Stimulants/pharmacology , Rodentia , Motor Activity , Methamphetamine/pharmacology
2.
Nat Commun ; 14(1): 8255, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086803

ABSTRACT

The hypothesis of N-methyl-D-aspartate receptor (NMDAR) dysfunction for cognitive impairment in schizophrenia constitutes the theoretical basis for the translational application of NMDAR co-agonist D-serine or its analogs. However, the cellular mechanism underlying the therapeutic effect of D-serine remains unclear. In this study, we utilize a mouse neurodevelopmental model for schizophrenia that mimics prenatal pathogenesis and exhibits hypoexcitability of parvalbumin-positive (PV) neurons, as well as PV-preferential NMDAR dysfunction. We find that D-serine restores excitation/inhibition balance by reconstituting both synaptic and intrinsic inhibitory control of cingulate pyramidal neurons through facilitating PV excitability and activating small-conductance Ca2+-activated K+ (SK) channels in pyramidal neurons, respectively. Either amplifying inhibitory drive via directly strengthening PV neuron activity or inhibiting pyramidal excitability via activating SK channels is sufficient to improve cognitive function in this model. These findings unveil a dual mechanism for how D-serine improves cognitive function in this model.


Subject(s)
Schizophrenia , Mice , Animals , Pregnancy , Female , Schizophrenia/drug therapy , Serine/pharmacology , Pyramidal Cells/physiology , Neurons/metabolism , Synaptic Transmission , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Pestic Biochem Physiol ; 194: 105470, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532344

ABSTRACT

Flavonoids are ubiquitously distributed in plants, showing pleiotropic effects in defense against abiotic and biotic stresses. Although it has been shown that seed priming with flavonoids can enhance plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stresses, especially for herbivorous insects. Here, we investigated whether treatment of tomato (Solanum lycopersicum) seeds with rutin improves plant resistance against the whitefly (Bemisia tabaci). Specifically, we measured the effect of rutin seed treatment on tomato seedling vigour, plant growth, feeding behavior and performance of B. tabaci on plants grown from control and rutin-treated seeds, and plant defense responses to B. tabaci attack. We found that seed treatment with different concentrations of rutin (viz 1, 2, 5, 10, and 20 mM) had minimal impact on shoot growth. Furthermore, seed treatment of rutin reduced the developmental rate of nymphs, the fecundity and feeding efficiency of adult females on plants grown from these seeds. The enhanced resistance of tomato against B. tabaci is closely associated with increased flavonoids accumulation, callose deposition and the expression of jasmonic acid (JA)-dependent defense genes. Additionally, callose deposition and expression of JA-dependent genes in tomato plants grown from rutin-treated seeds significantly increased upon B. tabaci infestation. These results suggest that seed treatment with rutin primes tomato resistance against B. tabaci, and are not accompanied by reductions in shoot growth. Defense priming by seed treatments may therefore be suitable for commercial exploitation.


Subject(s)
Hemiptera , Solanum lycopersicum , Animals , Female , Hemiptera/physiology , Rutin/pharmacology , Flavonoids/pharmacology , Seeds
4.
Pest Manag Sci ; 79(11): 4644-4654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37442806

ABSTRACT

BACKGROUND: The role of plant flavonoids in direct defences against chewing and sap-sucking herbivorous insects has been extensively characterized. However, little is known about flavonoid-mediated tritrophic interactions between plants, herbivorous insects and natural enemies. In this study, we investigated how flavonoids modulate plant-insect interactions in a tritrophic system involving near-isogenic lines (NILs) of cultivated tomato (Solanum lycopersicum) with high (line NIL-purple hypocotyl [PH]) and low (line NIL-green hypocotyl [GH]) flavonoid levels, with a generalist herbivore whitefly (Bemisia tabaci) and its predatory bug (Orius sauteri). RESULTS: By contrasting levels of tomato flavonoids (direct defence) while manipulating the presence of predators (indirect defence), we found that high production of flavonoids in tomato was associated with a higher inducibility of direct defences and a stronger plant resistance to whitefly infestation and stimulated the emissions of induced volatile organic compounds, thereby increasing the attractiveness of B. tabaci-infested plants to the predator O. sauteri. Furthermore, suppression of B. tabaci population growth and enhancement of plant growth were mediated directly by the high production of flavonoids and indirectly by the attraction of O. sauteri, and the combined effects were larger than each effect individually. CONCLUSION: Our results show that high flavonoid production in tomato enhances herbivore-induced direct and indirect defences to better defend against herbivores in tritrophic interactions. Thus, the development of transgenic plants may present an opportunity to utilize the beneficial role of flavonoids in integrated pest management, while simultaneously maintaining or improving resistance against other pests and pathogens. © 2023 Society of Chemical Industry.

5.
Psychopharmacology (Berl) ; 240(6): 1275-1285, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37071130

ABSTRACT

RATIONALE: Serotonergic psychedelics show promise in the treatment of psychiatric disorders, including obsessive-compulsive disorder. Dysfunction of the orbitofrontal cortex (OFc) has been implicated in the pathophysiology of compulsive behavior, which might be a key region for the efficacy of psychedelics. However, the effects of psychedelics on the neural activities and local excitation/inhibition (E/I) balance in the OFc are unclear. OBJECTIVES: This study aimed to investigate how 25C-NBOMe, a substituted phenethylamine psychedelic, regulated the synaptic and intrinsic properties of neurons in layer II/III of the OFc. METHODS: Acute brain slices containing the OFc of adult male Sprague Dawley rats were used for ex vivo whole-cell recording. The synaptic and intrinsic properties of neurons were monitored using voltage and current clamps, respectively. Electrically evoked action potential (eAP) was used to measure synaptic-driven pyramidal activity. RESULTS: 25C-NBOMe enhanced spontaneous neurotransmission at glutamatergic synapses but diminished that in GABAergic synapses through the 5-HT2A receptor. 25C-NBOMe also increased both evoked excitatory currents and evoked action potentials. Moreover, 25C-NBOMe promoted the excitability of pyramidal neurons but not fast-spiking neurons. Either inhibiting G protein-gated inwardly rectifying potassium channels or activating protein kinase C significantly obstructed the facilitative effect of 25C-NBOMe on the intrinsic excitability of pyramidal neurons. CONCLUSIONS: This work reveals the multiple roles of 25C-NBOMe in modulating synaptic and neuronal function in the OFc, which collectively promotes local E/I ratios.


Subject(s)
Hallucinogens , Rats , Animals , Male , Hallucinogens/pharmacology , Rats, Sprague-Dawley , Neurons , Synaptic Transmission/physiology , Prefrontal Cortex , Pyramidal Cells
6.
Scand J Gastroenterol ; 58(8): 844-855, 2023.
Article in English | MEDLINE | ID: mdl-36924259

ABSTRACT

BACKGROUND/AIMS: Gastro-oesophageal reflux disease (GORD) is a chronic high-morbidity disease with a bidirectional relationship with sleep disturbance (SD) that may occur via the transient receptor potential vanilloid type 1 receptor (TRPV1) in the oesophageal mucosa. Yet the related mechanism was still unclear, the aim of this study is to investigate whether TRPV1 is associated with the presence of SD in GORD patients. METHODS: A case-control study was performed. After the screening, A total of 88 subjects were assigned to GORD without sleep disturbance (GORD + NOSD, n = 28), GORD comorbid sleep disturbance (GORD + SD, n = 30) and matched healthy controls (n = 30). Mucosal tissue was obtained from the participants by digestive endoscopy, the levels of TRPV1 expressed in the oesophageal mucosa were detected via RT-qPCR and western blot in different groups, and the correlation between GORD and SD were also analysed. RESULTS: In this study, we found that the Gastroesophageal Reflux Disease Diagnostic Questionnaire (GerdQ) scores was positively correlated with Pittsburgh Sleep Quality Index (PSQI) scores but negatively correlated with total sleep time (TST). We also found that the level of TRPV1 expressed in the oesophageal mucosa of GORD + SD was significantly higher than GORD + NOSD patients, and they were all higher than healthy controls. CONCLUSION: The current study suggested a closer link exists between GORD and sleep disturbance, and TRPV1 in oesophageal mucosa may be a crucial factor affecting sleep in GORD patients.


Subject(s)
Gastroesophageal Reflux , Sleep Wake Disorders , TRPV Cation Channels , Humans , Case-Control Studies , Chronic Disease , Gastroesophageal Reflux/complications , Gastroesophageal Reflux/genetics , Risk Factors , Sleep Wake Disorders/genetics , Surveys and Questionnaires , TRPV Cation Channels/genetics
7.
Healthcare (Basel) ; 11(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36833088

ABSTRACT

Benzodiazepine-receptor agonists (BZRAs), including benzodiazepines (BZDs) and drugs related to BZDs (Z-drugs), are commonly used for anxiety, but often have side effects. We retrospectively investigated the utilization and prescription characteristics of BZRAs for patients with anxiety disorders in a large tertiary care general hospital between 2018 and 2021, based on electronic healthcare records. We also examined the pattern of simultaneous consumption of multiple BZRA drugs, and the diseases coexisting with anxiety that are associated with this. The numbers of patients and BZRA prescriptions increased over the 4 years. Moreover, 7195 prescriptions from 694 patients contained two or more BZRAs, of which 78.08% contained both BZDs and Z-drugs, 19.78% contained multiple BZDs, and 2.14% contained multiple Z-drugs. For anxiety patients with concomitant Alzheimer's disease or Parkinson's disease, and dyslipidemia, they were more likely to consume multiple BZRAs simultaneously, whereas patients with concomitant insomnia, depression, hypertension, diabetes, or tumors were less likely to consume multiple BZRAs (all p < 0.05). Furthermore, older patients who consume multiple BZRAs simultaneously may have higher probabilities of long-term drug use. Better interventions supporting standardized BZD utilization may be needed to minimize the side effects of inappropriate BZRA administration.

8.
Neuropharmacology ; 227: 109452, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36724866

ABSTRACT

Serotoninergic psychedelics induced extensive alterations in perception and cognition, which has been attributable to its disruptive effect on oscillatory rhythms of prefrontal cortex. However, there is a lack of information how serotoninergic psychedelics affect the intra-prefrontal network, which intrinsically interact to accomplish perceptual processing. Uncovering the altered neural network caused by psychedelics helps to understand the mechanisms of their psychoactive effects and contribute to develop biological markers of psychedelic effects. In present study, we investigated the effects of substituted phenethylamine psychedelic 25C-NBOMe on neural oscillations in the intra-prefrontal and hippocampal-prefrontal network. The effective dose of 25C-NBOMe (0.1 mg/kg) disrupting sensorimotor gating in male Sprague-Dawley rats was used to observe its effects on neural oscillations in the prelimbic cortex, anterior cingulate cortex, orbitofrontal cortex (OFC) and hippocampus CA1. The power of high frequency oscillation (HFO, 120-150 Hz) was potentiated by 25C-NBOMe selectively in the OFC, with peaking at 20-30 min after treatment. 25C-NBOMe strengthened HFO coherence within the intra-prefrontal, rather than hippocampal-prefrontal network. Potentiated HFO in the OFC had a strong positive correlation with the strengthened inter-prefrontal HFO coherence by 25C-NBOMe. The 25C-NBOMe-induced alterations of rhythmic patterns were prevented by pre-treatment with selective serotonin 2A receptor antagonist MDL100,907. These results demonstrate that OFC rhythmic activity in HFO is relatively susceptible to substituted phenethylamine and potentially drives drug-induced rhythmic coherence within intra-prefrontal regions. Our findings provide additional insight into the neuropathophysiology of the psychoactive effects of psychedelics and indicate that the altered HFO might be applied as a potential biological marker of psychedelic effect.


Subject(s)
Hallucinogens , Rats , Male , Animals , Hallucinogens/pharmacology , Rats, Sprague-Dawley , Phenethylamines/pharmacology , Disease Susceptibility , Prefrontal Cortex
9.
Addict Biol ; 28(2): e13265, 2023 02.
Article in English | MEDLINE | ID: mdl-36692872

ABSTRACT

Carfentanil, as a fentanyl analogue, is a potent synthetic opioid. It has been controlled in many countries, and its emergence has been highlighted by many recent reports. However, although discriminative stimulus effects of carfentanil in rats had been reported, its abuse potential has not been fully evaluated. In this study, we evaluated the abuse potential of carfentanil via the tests of conditioned place preference (CPP), drug self-administration and naloxone-precipitated opioid withdrawal assay, compared with fentanyl and heroin. Carfentanil exhibited significant place preference at a minimum dose of 1 µg/kg in mice, whereas fentanyl and heroin induced significant place preference at the minimum doses of 100 µg/kg and 1000 µg/kg, respectively. In the drug-substitution test in heroin self-administered rats (50 µg/kg/infusion), carfentanil and fentanyl acquired significant self-administrations above saline levels from 0.05-0.1 and 0.1-10.0 µg/kg/infusion, respectively. Carfentanil induced the maximum number of infusions at 0.1 µg/kg, whereas fentanyl and heroin at 1 and 25 µg/kg, respectively. In short, carfentanil showed the highest potency to induce CPP and self-administration. Furthermore, repeated treatment with escalating doses of carfentanil, fentanyl or heroin induced typical withdrawal symptoms in mice, including a greater number of jumping and weight loss than saline group. This indicated that carfentanil could produce physical dependence similar to fentanyl and heroin. Taken together, the present study demonstrated the higher abuse potential of carfentanil compared with fentanyl and heroin. The rank order of abuse potential for these compounds is carfentanil > fentanyl > heroin.


Subject(s)
Analgesics, Opioid , Substance Withdrawal Syndrome , Rats , Mice , Animals , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Heroin/pharmacology , Fentanyl/pharmacology , Naloxone/therapeutic use , Substance Withdrawal Syndrome/drug therapy
10.
Insect Sci ; 30(1): 173-184, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35633508

ABSTRACT

Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is often used for biological control of small arthropod pests in greenhouse vegetable production systems in Asia. In addition to feeding on arthropod prey, O. sauteri consumes small quantities of plant material. Previous studies demonstrated that tomato plant chemistry confers antixenosis resistance to phloem-feeding whiteflies, but the potential nontarget effects of phytochemicals on the beneficial predator O. sauteri are unknown. Comparison of O. sauteri confined to near-isogenic lines (NILs) of tomatoes producing high levels of flavonoids (NIL-purple hypocotyl; resistant to whiteflies) and low levels of flavonoids (NIL-green hypocotyl; susceptible to whiteflies) revealed that O. sauteri had reduced oviposition, nymphal survival, and development on resistant plants, even if they were also provided with prey that did not feed on the host plant. Moreover, O. sauteri showed a significant ovipositional preference in choice assays, laying significantly more eggs on susceptible than on resistant plants. Molecular gut content analysis using the specific chloroplast trnL gene from tomato confirmed that adult and immature O. sauteri feed on both resistant and susceptible genotypes, and feeding behavior assays revealed that resistance did not affect plant feeding or prey acceptance by O. sauteri adults. These results demonstrate a direct negative effect of phytochemicals on a nontarget beneficial species and indicate that resistance mediated by phytochemicals can affect organisms that do not solely feed on phloem sap. The results also indicate that the mode of action and the potential ecological effects of phytochemical-mediated resistance are broader than previously recognized.


Subject(s)
Hemiptera , Heteroptera , Solanum lycopersicum , Female , Animals , Biological Control Agents/pharmacology , Feeding Behavior , Oviposition
11.
Biomed Pharmacother ; 153: 113346, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076473

ABSTRACT

The I1 imidazoline receptor and its candidate protein imidazoline receptor antisera-selected (IRAS)/Nischarin are linked to µ opioid receptor (MOR) functions associated with MOR trafficking. We previously demonstrated that IRAS may play an important role in the development of morphine tolerance and physical dependence in vivo. However, the effects of IRAS on morphine psychological dependence are not fully understood. To extend these studies, we investigated the impact of IRAS on morphine dependence in conditioned place preference (CPP) experiments and explored the underlying mechanisms. Knockout of IRAS enhanced the acquisition and reinstatement of morphine-induced CPP. Conditional-knockout of IRAS in the nucleus accumbens (NAc) reproduced higher CPP, and overexpression of IRAS in the NAc rescued the increased morphine-induced CPP in IRAS-/- mice. IRAS-/- mice showed dramatic cAMP-dependent protein kinase (PKA) activation, upregulation of the phosphorylation of the AMPA receptor GluR1-S845 and NMDA receptor NR1-S897 in the NAc after CPP experiment. Moreover, knockout of IRAS induced an increase in spontaneous excitatory postsynaptic current (sEPSC) frequency and a decrease in the AMPA/NMDA ratio in the NAc after chronic morphine treatment. The selective AMPA receptor antagonist NBQX could inhibit morphine CPP in WT mice, while its effect was significantly reduced in IRAS-/- mice. Together, our results demonstrate that IRAS contributes to the regulation of morphine dependence and that the alteration of glutamatergic transmission in the NAc may participate in the effect of IRAS.


Subject(s)
Morphine Dependence , Morphine , Animals , Glutamic Acid/metabolism , Imidazoline Receptors/metabolism , Immune Sera/metabolism , Immune Sera/pharmacology , Mice , Mice, Knockout , Morphine/metabolism , Morphine/pharmacology , Nucleus Accumbens , Receptors, AMPA/metabolism , Reward
12.
Toxicology ; 480: 153337, 2022 10.
Article in English | MEDLINE | ID: mdl-36162621

ABSTRACT

N-isopropylbenzylamine, an isomer of methamphetamine, has been used to adulterate methamphetamine, and distributed as fake "Ice" methamphetamine by illicit manufacturers, leading to a world problem of N-isopropylbenzylamine exposure. Though it is unclear whether N-isopropylbenzylamine has addictive potential like methamphetamine, N-isopropylbenzylamine users reported side effects such as headaches and confusion. However, the pharmacological targets and cytotoxicity of this chemical remained unknown. In this study, in vitro toxicity of N-isopropylbenzylamine and its toxicity-related targets were investigated in SN4741, SH-SY5Y or PC12 cell lines that model neurons. The cell viability was analyzed by using MTT assay after incubation with N-isopropylbenzylamine for 24 h in cells. N-isopropylbenzylamine caused cell death with IC50 values at around 1-3 mM in these cell lines. N-isopropylbenzylamine time- and concentration-dependently facilitated the expression of neuronal nitric oxide synthase (nNOS), and increased intracellular nitric oxide (NO) in SN4741 cells. Furthermore, 7-nitroindazole, a specific inhibitor of nNOS, significantly prevented N-isopropylbenzylamine-induced toxicity in vitro. These results suggested that N-isopropylbenzylamine-induced toxicity is at least partially related to the increased intracellular NO levels and the activated nNOS. Considering the circumstances that N-isopropylbenzylamine was used to adulterate and mimic methamphetamine, and the side effects associated with N-isopropylbenzylamine in abusers, our findings sounded an alarm for abuser and warn the dangerousness of N-isopropylbenzylamine for public health.


Subject(s)
Methamphetamine , Neuroblastoma , Amines , Humans , Methamphetamine/toxicity , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism
13.
Neuroreport ; 33(15): 669-680, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36126265

ABSTRACT

Adverse psychological states are stimulated by multiple types of environmental factors in human being. However, only few animal models of adverse psychological states were established by applying multiple types of stressors to mimic real conditions. A multisensory stress simulation device was designed to apply a combination of stressors to animals. Selected types and intensity of stressors were stimulated by this multisensory stress simulation device to induce chronic multiple mild stress (CMMS) in rats, modeling sustained adverse psychological states caused by long-term exposure in relative extreme environments with limited social interaction in human being. Fourteen-day treatment of CMMS-induced anhedonia, anxiety, and the loss of body weight in rats, which were similar to those in human being with adverse psychological states. Moreover, CMMS treatment leads to decreased production of serotonin and increased expression of corticotropin-releasing factor receptor 1, adrenocorticotropic hormone, and glucocorticoid in the brain, which were prevented by paroxetine and sertraline, two clinical-used antidepressants. Furthermore, these antidepressants prevented the CMMS-induced inhibition of brain-derived neurotrophic factor/cAMP-response element binding protein pathway, reduction of synaptic protein expression, and the activation of microglia and astrocytes in the hippocampus and the prefrontal cortex of rats. In addition, 14-day CMMS-induced long-term depressive-like behaviors, even after 14 days of CMMS treatment. And sertraline reversed CMMS-induced behavioral and biochemical changes in rats. All these results suggested that CMMS protocol induced sustained adverse psychological states in rats. By adjusting the intensity and the type of stressors in the multisensory stress simulation device, it might be practicable to establish animal models with complicated and changeable environmental factors.


Subject(s)
Brain-Derived Neurotrophic Factor , Stress, Psychological , Adrenocorticotropic Hormone , Animals , Glucocorticoids , Humans , Paroxetine , Rats , Serotonin , Sertraline , Stress, Psychological/metabolism
14.
Behav Brain Res ; 435: 114052, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35952778

ABSTRACT

Arylcyclohexylamines is an ever-growing class of new psychoactive substances, including an increasing number of ketamine analogs. N-Ethylnorketamine (NENK) is a new synthetic ketamine analog that has emerged as an abused drug, but little is known about the pharmacological profile of NENK. In this study, we investigated the anesthetic and analgesic activity, abuse liability of NENK compared with ketamine. The ED50 values of anesthetic activity for NENK and ketamine were 96.9, 69.4 mg/kg, respectively. The ED50 values of analgesic activity for NENK and ketamine were 45.9 and 23.6 mg/kg, respectively. NENK induced significant conditioned place preference at a minimum dose of 10.0 mg/kg in mice, an effect comparable to that of ketamine (3.0 mg/kg). Acute injections of NENK or ketamine at 30.0 mg/kg enhanced locomotor activity, and repeated treatments with this dose induced locomotor sensitization after withdrawal. Taken together, these results clearly demonstrated that NENK has lower anesthetic and analgesic activity compared to ketamine, but has significant abuse liability.


Subject(s)
Anesthetics , Ketamine , Animals , Ketamine/pharmacology , Mice
15.
Addict Biol ; 27(3): e13171, 2022 05.
Article in English | MEDLINE | ID: mdl-35470563

ABSTRACT

2-Fluorodeschloroketamine (2-FDCK) as a substitute for ketamine has emerged among drug abusers in recent years. However, 2-FDCK has not been controlled or regulated in many countries, which may be partly related to the lack of evidence on its abuse potential. In this study, we evaluated the abuse potential of 2-FDCK via the tests of the conditioned place preference (CPP), locomotor sensitization, drug self-administration and drug discrimination using ketamine as a reference. 2-FDCK induced significant CPP at a minimum dose of 3 mg/kg in mice, an effect comparable with that of ketamine (3 mg/kg). Acute injections of 2-FDCK or ketamine at 30 mg/kg enhanced locomotor activity. Repeated treatments with this dose of 2-FDCK and ketamine induced locomotor sensitization after withdrawal. 2-FDCK readily induced self-administration with 0.5 mg/kg/infusion, the same dose for ketamine, and induced the highest seeking response at 1 mg/kg. Drug discrimination test showed that 2-FDCK dose-dependently substitute for ketamine with comparable ED50 to ketamine in substitution testing. Taken together, these results strongly suggested that 2-FDCK has an abuse potential comparable with ketamine.


Subject(s)
Ketamine , Animals , Ketamine/pharmacology , Locomotion , Mice , Self Administration
16.
Front Aging Neurosci ; 13: 772980, 2021.
Article in English | MEDLINE | ID: mdl-34916926

ABSTRACT

The N-methyl-D-aspartate receptor is a critical molecule for synaptic plasticity and cognitive function. Impaired synaptic plasticity is thought to contribute to the cognitive impairment associated with Alzheimer's disease (AD). However, the neuropathophysiological alterations of N-methyl-D-aspartate receptor (NMDAR) function and synaptic plasticity in hippocampal CA1 in transgenic rodent models of AD are still unclear. In the present study, APP/PS1 mice were utilized as a transgenic model of AD, which exhibited progressive cognitive impairment including defective working memory, recognition memory, and spatial memory starting at 6 months of age and more severe by 8 months of age. We found an impaired long-term potentiation (LTP) and reduced NMDAR-mediated spontaneous excitatory postsynaptic currents (sEPSCs) in the hippocampal CA1 of APP/PS1 mice with 8 months of age. Golgi staining revealed that dendrites of pyramidal neurons had shorter length, fewer intersections, and lower spine density in APP/PS1 mice compared to control mice. Further, the reduced expression levels of NMDAR subunits, PSD95 and SNAP25 were observed in the hippocampus of APP/PS1 mice. These results suggest that NMDAR dysfunction, impaired synaptic plasticity, and disrupted neuronal morphology constitute an important part of the neuropathophysiological alterations associated with cognitive impairment in APP/PS1 mice.

17.
J Alzheimers Dis ; 84(1): 129-140, 2021.
Article in English | MEDLINE | ID: mdl-34487044

ABSTRACT

BACKGROUND: Abnormal morphology and function of neurons in the prefrontal cortex (PFC) are associated with cognitive deficits in rodent models of Alzheimer's disease (AD), particularly in cortical layer-5 pyramidal neurons that integrate inputs from different sources and project outputs to cortical or subcortical structures. Pyramidal neurons in layer-5 of the PFC can be classified as two subtypes depending on the inducibility of prominent hyperpolarization-activated cation currents (h-current). However, the differences in the neurophysiological alterations between these two subtypes in rodent models of AD remain poorly understood. OBJECTIVE: To investigate the neurophysiological alterations between two subtypes of pyramidal neurons in hAPP-J20 mice, a transgenic model for early onset AD. METHODS: The synaptic transmission and intrinsic excitability of pyramidal neurons were investigated using whole-cell patch recordings. The morphological complexity of pyramidal neurons was detected by biocytin labelling and subsequent Sholl analysis. RESULTS: We found reduced synaptic transmission and intrinsic excitability of the prominent h-current (PH) cells but not the non-PH cells in hAPP-J20 mice. Furthermore, the function of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which mediated h-current was disrupted in the PH cells of hAPP-J20 mice. Sholl analysis revealed that PH cells had less dendritic intersections in hAPP-J20 mice comparing to control mice, implying that a lower morphological complexity might contribute to the reduced neuronal activity. CONCLUSION: These results suggest that the PH cells in the medial PFC may be more vulnerable to degeneration in hAPP-J20 mice and play a sustainable role in frontal dysfunction in AD.


Subject(s)
Alzheimer Disease/physiopathology , Disease Models, Animal , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Synaptic Transmission , Animals , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Male , Mice , Mice, Transgenic , Patch-Clamp Techniques
18.
Pharmacol Biochem Behav ; 202: 173103, 2021 03.
Article in English | MEDLINE | ID: mdl-33444600

ABSTRACT

Neurodevelopmental abnormalities are associated with cognitive dysfunction in schizophrenia. In particular, deficits of working memory, are consistently observed in schizophrenia, reflecting prefrontal cortex (PFc) dysfunction. To elucidate the mechanism of such deficits in working memory, the pathophysiological properties of PFc neurons and synaptic transmission have been studied in several developmental models of schizophrenia. Given the pathogenetic heterogeneity of schizophrenia, comparison of PFc synaptic transmission between models of prenatal and postnatal defect would promote our understanding on the developmental components of the biological vulnerability to schizophrenia. In the present study, we investigated the excitatory synaptic transmission onto pyramidal cells localized in layer 5 of the medial PFc (mPFc) in two developmental models of schizophrenia: gestational methylazoxymethanol acetate (MAM) administration and post-weaning social isolation (SI). We found that both models exhibited defective spatial working memory, as indicated by lower spontaneous alternations in a Y-maze paradigm. The recordings from pyramidal neurons in both models exhibited decreased spontaneous excitatory postsynaptic current (sEPSC), representing the reduction of excitatory synaptic transmission in the mPFc. Interestingly, a positive correlation between the impaired spontaneous alternation behavior and the decreased excitatory synaptic transmission of pyramidal neurons was found in both models. These findings suggest that diminished excitatory neurotransmission in the mPFc could be a common pathophysiology regardless of the prenatal and postnatal pathogenesis in developmental models of schizophrenia, and that it might underlie the mechanism of defective working memory in those models.


Subject(s)
Memory, Short-Term , Neurodevelopmental Disorders/psychology , Schizophrenia/metabolism , Schizophrenic Psychology , Spatial Memory , Synaptic Transmission , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Excitatory Postsynaptic Potentials/drug effects , Female , Male , Memory, Short-Term/drug effects , Methylazoxymethanol Acetate/adverse effects , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Pregnancy , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Schizophrenia/chemically induced , Social Isolation , Spatial Memory/drug effects , Synaptic Transmission/drug effects
19.
Neuropsychopharmacology ; 46(5): 970-981, 2021 04.
Article in English | MEDLINE | ID: mdl-33514875

ABSTRACT

Impaired glutamate homeostasis is a key characteristic of the neurobiology of drug addiction in rodent models and contributes to the vulnerability to relapse to drug seeking. Although disrupted astrocytic and presynaptic regulation of glutamate release has been considered to constitute with impaired glutamate homeostasis in rodent model of drug relapse, the involvement of endocannabinoids (eCBs) in this neurobiological process has remained largely unknown. Here, using cocaine self-administration in rats, we investigated the role of endocannabinoids in impaired glutamate homeostasis in the core of nucleus accumbens (NAcore), which was indicated by augmentation of spontaneous synaptic glutamate release, downregulation of metabotropic glutamate receptor 2/3 (mGluR2/3), and mGluR5-mediated astrocytic glutamate release. We found that the endocannabinoid, anandamide (AEA), rather than 2-arachidonoylglycerol elicited glutamate release through presynaptic transient receptor potential vanilloid 1 (TRPV1) and astrocytic cannabinoid type-1 receptors (CB1Rs) in the NAcore of saline-yoked rats. In rats with a history of cocaine self-administration and extinction training, AEA failed to alter synaptic glutamate release in the NAcore, whereas CB1R-mediated astrocytic glutamate release by AEA remained functional. In order to induce increased astrocytic glutamate release via exogenous AEA, (R)-methanandamide (methAEA, a metabolically stable form of AEA) was chronically infused in the NAcore via osmotic pumps during extinction training. Restoration of mGluR2/3 function and mGluR5-mediated astrocytic glutamate release was observed after chronic methAEA infusion. Additionally, priming or cue-induced reinstatement of cocaine seeking was inhibited in methAEA-infused rats. These results demonstrate that enhancing endocannabinoid signaling is a potential pathway to restore glutamate homeostasis and may represent a promising therapeutic strategy for preventing cocaine relapse.


Subject(s)
Cocaine-Related Disorders , Cocaine , Pharmaceutical Preparations , Animals , Cocaine-Related Disorders/drug therapy , Endocannabinoids , Extinction, Psychological , Glutamic Acid , Homeostasis , Nucleus Accumbens , Rats , Rats, Sprague-Dawley , Recurrence , Self Administration
20.
Pharmacol Biochem Behav ; 203: 173128, 2021 04.
Article in English | MEDLINE | ID: mdl-33515585

ABSTRACT

The molecular and behavioral aspects of α-pyrrolidinopentiophenone (α-PVP) have been characterized; however, how the structural modification of α-PVP affects its abuse potential is still unknown. In this study, we investigated the abuse potential of two pyrrolidinylated second-generation cathinones:4-chloro-α-pyrrolidinopentiophenone (4cl-α-PVP) and 4-chloro-α-pyrrolidinopropiophenone (4cl-α-PPP). Male Sprague-Dawley rats were trained to self-administer methamphetamine (METH, 0.05 mg·kg-1·infusion-1), α-PVP (0.05 mg·kg-1·infusion-1), 4cl-α-PVP (0.05 mg·kg-1·infusion-1), and 4cl-α-PPP (0.5 mg·kg-1·infusion-1) under a fixed ratio (FR) 1 reinforcement schedule for 10 sessions. The discriminative-stimulus effect of METH (0.8 mg/kg) from saline was tested under an FR10 schedule of food delivery. α-PVP, 4cl-α-PVP and 4cl-α-PPP produced reinforcement behaviors and presented an inverted U-shaped dose effect. The reinforcing potency was displayed with a rank order of α-PVP (0.029 mg·kg-1·infusion-1) > METH (0.040 mg·kg-1·infusion-1) > 4cl-α-PVP (0.094 mg·kg-1·infusion-1) > 4cl-α-PPP (0.51 mg·kg-1·infusion-1). All three drugs were fully substituted for the discriminative-stimulus effects of METH in rats. The substitution potency for discriminative-stimulus effects of α-PVP (ED50 = 0.4 mg/kg) was approximately equal to that of METH (ED50 = 0.3 mg/kg), while the discriminative potency of 4cl-α-PVP (ED50 = 1.0 mg/kg) and 4cl-α-PPP (ED50 = 5 mg/kg) was approximately 3 and 16-fold less than that of METH. The rank order of potency was α-PVP ≈ METH >4cl-α-PVP > 4cl-α-PPP. The present data demonstrated that 4cl-α-PVP and 4cl-α-PPP produced reinforcing effects and fully and dose-dependently substituted for the subjective effects of METH, suggesting that both 4cl-α-PVP and 4cl-α-PPP have abuse potential that may be similar to METH.


Subject(s)
Alkaloids/administration & dosage , Central Nervous System Stimulants/administration & dosage , Designer Drugs/administration & dosage , Methamphetamine/administration & dosage , Pentanones/administration & dosage , Propiophenones/administration & dosage , Pyrrolidines/administration & dosage , Reinforcement, Psychology , Alkaloids/adverse effects , Animals , Central Nervous System Stimulants/adverse effects , Conditioning, Operant/drug effects , Designer Drugs/adverse effects , Dose-Response Relationship, Drug , Illicit Drugs , Male , Pentanones/adverse effects , Propiophenones/adverse effects , Pyrrolidines/adverse effects , Rats , Rats, Sprague-Dawley , Self Administration , Substance-Related Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...