Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(48): 19691-19702, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38038246

ABSTRACT

MoSxSe2-x nanofilms, as a typical metal dichalcogenide, have attracted great interest, due to their adjustable bandgap and distinctive electronic and optical properties. However, the inherent bandgap of MoSxSe2-x and the strong interface recombination impede the actualization of a high-sensitivity photodetector (PD). Few-layer MoSxSe2-x nanofilms were prepared with vertically orientation at 450 °C, which would be a less restrictive choice of substrates. Herein, a self-powered MoSxSe2-x/SiOx/Si photodetector was fabricated which exhibits unprecedented performance with excellent reproducibility and stability from 405 nm to 980 nm, a high responsivity (0.450 A W-1), normalized detectivity (4.968 × 1012 Jones) and ultrafast photoresponse (τr = 1.20 µs, τf = 4.92 µs) at zero bias under 980 nm incident laser illumination with a density of 200 µW cm-2. Significantly, the self-powered PD is capable of detecting ultraweak IR signals below 200 µW cm-2 with high on-off ratios. More importantly, an oxidized atomic layer is generated through the wet oxidation in the Piranha solution. The PD can work well at high frequencies even at 100 kHz, which shows its potential application in high-frequency photoelectric devices and health monitors. Summing up, this work not only suggests that an ultrathin SiOx interface layer can reduce carrier recombination via simple interface engineering, but also proposes a novel strategy for the preparation of high-performance and low-cost optoelectronic devices.

2.
Nanotechnology ; 34(23)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36857771

ABSTRACT

In this paper, high-performance CuSCN/Si heterojunction near-infrared photodetectors were successfully prepared using nanoscale light-trapping optical structures. Various light-trapping structures of ortho-pyramids, inverted pyramids and silicon nanowires were prepared on silicon substrates. Then, CuSCN films were spin-coated on silicon substrates with high crystalline properties for the assembly of CuSCN/Si photodetectors. Their reflectance spectra and interfacial passivation properties were characterized, demonstrating their superiority of light-trapping structures in high light response. Under the irradiation of 980 nm near-infrared light, a maximum responsivity of 2.88 A W-1at -4 V bias and a specific detectivity of 5.427 × 1010Jones were obtained in the CuSCN/Si heterojunction photodetectors prepared on planner silicon due to 3.6 eV band gap of CuSCN. The substrates of the light-trapping structure were then applied to the CuSCN/Si heterojunction photodetectors. A maximum responsivity of 10.16 A W-1and a maximum specific detectivity of 1.001 × 1011Jones were achieved under the 980 nm near-infrared light irradiation and -4 V bias, demonstrating the advanced performance of CuSCN/Si heterojunction photodetectors with micro-nano light-trapping substrates in the field of near-infrared photodetection compared to other silicon-based photodetectors.

3.
Nanoscale ; 14(40): 15119-15128, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36205314

ABSTRACT

The non-catalytic preparation of high-quality vertical graphene nanowalls (VGN) and graphene-based high output power hydrovoltaic effect power generation devices has always been difficult to achieve. In this work, we successfully prepared VGN with defect density, few layers and submicron domain size on a variety of substrates without catalysts through reasonable adjustment of growth conditions by the hot-wire chemical vapor deposition (HWCVD) method. The Raman test of the VGN prepared under optimal conditions showed that its ID/IG value was less than 1, and I2D/IG was more than 2.8. The deposition pressure was a key factor affecting the crystallization quality of the VGN. A suitable deposition pressure of 500 Pa could screen the active carbon clusters involved in the growth of nanowalls. The VGN prepared had excellent electrical properties and output of dropping-ion-droplet nano-power generation devices. Because of the larger crystal domain area and smaller contact angle of the VGN, the maximum output power exhibited at 100 Pa was 15.7 µW, which exceeded the value produced by other reported hydrovoltaic energy harvesting devices. All of them confirmed that VGN with improved quality had high application prospects in nano-energy devices.

4.
Molecules ; 27(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35807325

ABSTRACT

Tin-based nanocomposite materials embedded in carbon frameworks can be used as effective negative electrode materials for lithium-ion batteries (LIBs), owing to their high theoretical capacities with stable cycle performance. In this work, a low-cost and productive facile hydrothermal method was employed for the preparation of a Sn/C nanocomposite, in which Sn particles (sized in nanometers) were uniformly dispersed in the conductive carbon matrix. The as-prepared Sn/C nanocomposite displayed a considerable reversible capacity of 877 mAhg-1 at 0.1 Ag-1 with a high first cycle charge/discharge coulombic efficiency of about 77%, and showed 668 mAh/g even at a relatively high current density of 0.5 Ag-1 after 100 cycles. Furthermore, excellent rate capability performance was achieved for 806, 697, 630, 516, and 354 mAhg-1 at current densities 0.1, 0.25, 0.5, 0.75, and 1 Ag-1, respectively. This outstanding and significantly improved electrochemical performance is attributed to the good distribution of Sn nanoparticles in the carbon framework, which helped to produce Sn/C nanocomposite next-generation negative electrodes for lithium-ion storage.

5.
RSC Adv ; 12(30): 19144-19153, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35865578

ABSTRACT

Graphene paper has attracted great attention as a heat dissipation material due to its excellent thermal conductivity and mechanical properties. However, the thermal conductivity of graphene paper in the normal direction is relatively poor. In this work, the cross-plane thermal conductivities (K ⊥) and mechanical properties of the reduced graphene oxide/carbon nanotube papers with different CNT loadings were studied systematically. It was found that the K ⊥ decreased from 0.0393 W m-1 K-1 for 0 wt% paper to 0.0250 W m-1 K-1 for 3 wt% paper, and then increased to 0.1199 W m-1 K-1 for 20 wt% paper. The papers demonstrated a maximum elastic modulus of 6.1 GPa with 10 wt% CNT loading. The CNTs acted as scaffolds to restrain the graphene sheets from corrugating and to reinforce the mechanical properties of the hybrid papers. The more CNTs that filled the gaps between graphene sheets, the greater the number of channels of the transmission of phonons and the looser the structure in the cross-plane direction. Further mechanism analysis revealed the synergistic effects of CNT loadings and graphene sheets on enhancing the thermal and mechanical performance of the papers.

6.
ACS Omega ; 7(19): 16494-16501, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35601318

ABSTRACT

Developing efficient crystalline silicon/wide-band gap metal-oxide thin-film heterostructure junction-based crystalline silicon (c-Si) solar cells has been an attractive alternative to the silicon thin film-based counterparts. Herein, nickel oxide thin films are introduced as the hole-selective layer for c-Si solar cells and prepared using the reactive sputtering technique with the target of metallic nickel. An optimal Ni3+ self-doped NiO x film is obtained by tuning the reactive oxygen atmosphere to construct the optimized c-Si/NiO x heterostructure band alignment. A thin SiO x interlayer was further introduced to reduce the defect of the c-Si/NiO x interface with the UV-ozone (UVO) treatment. The constructed p-type c-Si/SiO x /NiO x /Ag solar cell exhibits an increase in the open voltage from 586 to 611 mV and achieves a 19.2% conversion efficiency.

7.
ACS Appl Mater Interfaces ; 14(18): 21348-21355, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35482578

ABSTRACT

Vertical graphene nanowalls (VGNs) with excellent heat-transfer properties are promising to be applied in the thermal management of electronic devices. However, high growth temperature makes VGNs unable to be directly prepared on semiconductors and polymers, which limits the practical application of VGNs. In this work, the near room-temperature growth of VGNs was realized by utilizing the hot filament chemical vapor deposition method. Catalytic tantalum (Ta) filaments promote the decomposition of acetylene at ∼1600 °C. Density functional theory calculations proved that C2H* was the main active carbon cluster during VGN growth. The restricted diffusion of C2H* clusters induced the vertical growth of graphene nanoflakes on various substrates below 150 °C. The direct growth of VGNs successfully realized the excellent interfacial contact, and the thermal contact resistance could reach 3.39 × 10-9 m2·K·W-1. The temperature of electronic chips had a 6.7 °C reduction by utilizing directly prepared VGNs instead of thermal conductive tape as thermal-interface materials, indicating the great potential of VGNs to be directly prepared on electronic devices for thermal management.

8.
Materials (Basel) ; 15(7)2022 Mar 27.
Article in English | MEDLINE | ID: mdl-35407807

ABSTRACT

Tin oxide (SnO2) and tin-based composites along with carbon have attracted significant interest as negative electrodes for lithium-ion batteries (LIBs). However, tin-based composite electrodes have some critical drawbacks, such as high volume expansion, low capacity at high current density due to low ionic conductivity, and poor cycle stability. Moreover, complex preparation methods and high-cost carbon coating procedures are considered main challenges in the commercialization of tin-based electrodes for LIBs. In this study, we prepared a Sn/SnO2/C nano-composite structure by employing a low-cost hydrothermal method, where Sn nanoparticles were oxidized in glucose and carboxymethyl cellulose CMC was introduced into the solution. Scanning electron microscope (SEM) and transmission electron microscope revealed the irregular structure of Sn nanoparticles and SnO2 phases in the conductive carbon matrix. The as-prepared Sn/SnO2/C nano-composite showed high first-cycle reversible discharge capacity (2248 mAhg-1) at 100 mAg-1 with a first coulombic efficiency of 70%, and also displayed 474.64 mAhg-1 at the relatively high current density of about 500 mAg-1 after 100 cycles. A low-cost Sn/SnO2/C nano-composite with significant electrochemical performance could be the next generation of high-performance negative electrodes for LIBs.

9.
RSC Adv ; 12(6): 3755-3762, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35425359

ABSTRACT

Binary Cu x O1-x compounds have some advantages as optoelectronic functional materials, but their further development has encountered some bottlenecks, such as inaccurate bandgap values and slow improvement of photoelectric conversion efficiency. In this work, all possible stoichiometric ratios and crystal structures of binary Cu x O1-x compounds were comprehensively analyzed based on a high-throughput computing database. Stable and metastable phases with different stoichiometric ratios were obtained. Their stability in different chemical environments was further analyzed according to the component phase diagram and chemical potential phase diagram. The calculation results show that Cu, Cu2O and CuO have obvious advantages in thermodynamics. The comparison and analysis of crystal microstructure show that the stable phase of Cu x O1-x compounds contains the following two motifs: planar square with Cu atoms as the center and four O atoms as the vertices; regular tetrahedron with O atoms as the center and four Cu atoms as the vertices. In different stoichiometric ratio regions, the electron transfer and interaction modes between Cu and O atoms are different. This effect causes energy differences between bonding and antibonding states, resulting in the different conductivity of binary Cu x O1-x compounds: semi-metallic ferromagnetic, semiconducting, and metallicity. This is the root of the inconsistent and inaccurate bandgap values of Cu x O1-x compounds. These compositional, structural, and property variations provide greater freedom and scope for the development of binary Cu x O1-x compounds as optoelectronic functional materials.

10.
Nanotechnology ; 33(27)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35245909

ABSTRACT

In recent years, high-performance acetone gas sensors have attracted great attention for their potential in noninvasive blood glucose monitoring. In this work, black TiO2(B-TiO2) was introduced as an electron trapping layer between TiO2and ZnO to form TiO2@B-TiO2@ZnO core-shell nanoparticles, through a simple and safe method. The acetone sensing performance of TiO2@B-TiO2@ZnO varied with the thickness of ZnO. Because of the electron trapping effect of the introduced B-TiO2layer, the best performing sample exhibited a low optimal operating temperature of 275 °C and a high response of 49.25-50 ppm acetone. In addition, a low detection limit of 170 ppb was obtained. The pretty selectivity of the sample was also been proved. The mechanism of enhanced acetone response was explained by the energy band-based model of TiO2@B-TiO2@ZnO core-shell nanoparticle and depletion layer theory.

11.
ACS Omega ; 6(40): 26499-26508, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34661005

ABSTRACT

Carbon dots (CDs) are synthesized by the solvothermal method with four kinds of solvents including water, dimethylformamide (DMF), ethanol, and acetic acid (AA). The aqueous solutions of the above CDs emit multiple colors of blue (470 nm), green (500 nm), yellow (539 nm), and orange (595 nm). The structures, sizes, and chemical composition of the CDs are characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The optical properties of multicolored CDs are analyzed by UV-vis absorption and photoluminescence (PL) spectra. It has been revealed that DMF is the key solvent to synthesized CDs for the red shift of fluorescence emission, which could be enhanced by adding an AA solvent. The structures of functional groups such as the contents of graphitic N in carbon cores and oxygen-containing functional groups on the surface of CDs are affected by these four solvents. According to the oxidation and selective reduction of NaBH4, the implication for multicolor imaging has been discussed based on the COOH, C-O-C, and C=O functional groups.

12.
Sci Rep ; 11(1): 14550, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34267275

ABSTRACT

Embedded noble metal nanostructures and surface anti-reflection (AR) layers affect the optical properties of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells significantly. Herein, by employing a combined finite element method and genetic algorithm approach, we report five different types of CH3NH3PbI3 perovskite solar cells by introducing embedded Ag nanoparticles within the CH3NH3PbI3 layer and/or top ITO cylinder grating as an AR layer. The maximum photocurrent was optimized to reach 23.56 mA/cm2, which was 1.09/1.17 times higher than Tran's report/ flat cases. It is also comparable with values (23.6 mA/cm2) reported in the literature. The calculations of the electric field and charge carrier generation rate of the optimized solar cell further confirms this improvement than flat cases. It attributes to the synergistic effect of the embedded Ag nanoparticles and ITO AR layer. The results obtained herein hold great promise for future boosting the optical efficiency of perovskite solar cells.

13.
Nanotechnology ; 32(27)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33784656

ABSTRACT

The most effective and potential approach to improve the performance of heterojunction photodetectors is to obtain favorable interfacial passivation by adding an insertion layer. In this paper, MoOx/Al2O3/n-Si heterojunction photodetectors with excellent photocurrents, responsivity and detectivity were fabricated, in which alumina acts as a tunneling passivation layer. By optimizing the post-annealing treatment temperature of the MoOxand the thickness of the ultra-thin Al2O3, the photodetector achieved a ratio of photocurrent to dark current of 3.1 × 105, a photoresponsivity of 7.11 A W-1(@980 nm) and a detective of 9.85 × 1012Jones at -5 V bias. Besides, a self-driven response of 0.17 A W-1and a high photocurrent/dark current ratio of 2.07 × 104were obtained. The result demonstrated that optimizing the interface of heterojunctions is a promising way to obtain a heterojunction photodetector with high-performance.

14.
ACS Appl Mater Interfaces ; 13(12): 14587-14598, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33740376

ABSTRACT

A high-temperature air-stable solar selective absorber (SSA) based on TiW-SiO2 cermet is prepared by the co-sputtering method. The obtained SSA shows remarkable stability in spectrum, structure, and chemistry after air-annealing at 700 °C, demonstrating its resistance against air erosion at high temperature. Comparing with W-SiO2-based SSA, the addition of the Ti element is proved to be effective in enhancing the thermal stability of SSA. Nevertheless, as the temperature increases to 750 °C, perfectly round cavities appear and induce the deterioration of the coating. A phase transformation from α-W to ß-W is found at the interface of TiW/HMVF (high metal volume fraction layer) during deposition. Consequently, the inverse phase transformation from ß-W to α-W at above 750 °C results in small vacancies at the interface, being the incentive of cavity generation. Afterward, the violent morphological changes of oxidized TiW accelerate the cavities expansion. To enhance its tolerance ability of service temperature, a Cr barrier layer is introduced to prevent the diffusion of oxygen into the TiW layer. Therefore, the optimal SSA performs stably at 800 °C and the failure temperature is elevated to 850 °C, revealing that the air-stable TiW-SiO2-based SSA has outstanding potential in high-temperature photothermal conversion.

15.
Nanotechnology ; 32(15): 155503, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33395679

ABSTRACT

Various gas sensors have made considerable improvements to the quality of people's lives. However, in most cases, changing of materials is necessary to adapt to the changing of the target gas, which limits the further application of gas sensors. To meet this challenge, in this work, molecular imprinting (MI) technology is introduced. Acrylic acid is used as a functional monomer, while gas molecules, including acetone, are used as templates. The MI process with an acetone template helps improve the acetone selectivity of TiO2 by up to 1.74-2.80 times. Moreover, it proved that other templates can increase the corresponding selectivity by at least 1.5 times by using the same matrix material. These results demonstrate the potential importance of the MI process in constructing a highly compatible gas sensor industry. Beyond this, the MI process has proved to achieve an ultrahigh specific surface area of 384.36 m2 · g-1. The optimal acetone sensor exhibits desirable comprehensive performance compared with other reports. An excellent TiO2 based prototype acetone sensor working at 300 °C with a low detection limit of 18 ppb is obtained.

16.
ACS Appl Mater Interfaces ; 12(2): 2805-2815, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31867953

ABSTRACT

Property modulation of graphene glass by heteroatom doping such as boron (B) and nitrogen (N) is important to extend its practical applications. However, unlike N doping, research studies about the metal-free synthesis of B-doped graphene on glass through the chemical vapor deposition (CVD) method are rarely reported. Herein, we report a hot-filament CVD approach to prepare B-doped graphene glass using diborane (B2H6) as the B dopant. The synthesized B-doped graphene was uniform on a large-scale and composed of nanocrystalline graphene grains. By raising the B2H6 flow from 0 to 15 sccm, the B content of graphene was facilely modulated from 0 to 5.3 at. %, accompanied with the improvement of both transparency and conductivity. The B-doped graphene prepared on glass at 15 sccm B2H6 flow presented the optimal transparent conductive performance superior to those of most reported graphene glass fabricated by other state-of-the-art approaches. Furthermore, for the first time, the performance of graphene glass for wave energy harvesting has been elaborated. It was found that the output power produced by inserting graphene glass into 0.6 M sodium chloride (NaCl) solution could be improved by more than 6 times through B doping. The significant enhancement resulted from the higher waving voltage and smaller resistance of B-doped graphene on glass than the pristine ones. In addition, the waving voltage inversed the polarity after B doping, which was due to the opposite variation of surface potential of pristine and B-doped graphene after NaCl immersion. This work would pave ways for the metal-free preparation and expand the energy-harvesting applications of B-doped graphene materials.

17.
ACS Appl Mater Interfaces ; 10(20): 17427-17436, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29694019

ABSTRACT

Direct growth of graphene films on glass is of great importance but has so far met with limited success. The noncatalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (<1000 °C), and therefore amorphous carbon (a-C) films are more likely to be obtained. Here, we report the hydrogen influence on the structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphitelike carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 to over 80%. On the basis of systematic structural and chemical characterizations, a schematic process with three steps including sp2 chain aggregation, aromatic ring formation, and sp3 bond etching was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm2/(V s) and a resistivity of 5.24 × 10-3 Ω cm over an area of 1 cm2. Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localized, and extended states, respectively, when increasing the temperature from 75 to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than those of a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.

18.
Phys Chem Chem Phys ; 18(41): 28829-28834, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27722651

ABSTRACT

Ge-doped CZTSSe thin films were obtained by covering a thin Ge layer on CZTS precursors, followed by a selenization process. The effect of the Ge layer thickness on the morphologies and structural properties of Ge-doped CZTSSe thin films were studied. It was found that Ge doping could promote grain growth to form a compact thin film. The lattice shrank in the top-half of the film due to the smaller atomic radius of Ge, leading to the formation of tensile stress. According to thermodynamic analysis, Sn was easier to be selenized than Ge. Thus, Ge preferred to remain on the surface and increased the surface roughness when the Ge layer was thin. CZTSe was easier to form than Ge-doped CZTSe, which caused difficulty in Ge doping. These results offered a theoretical and experimental guide for preparing Ge-doped CZTSSe thin films for the potential applications in low-cost solar cells. With a 10 nm Ge layer on the top of the precursor, the conversion efficiency of the solar cell improved to 5.38% with an open-circuit voltage of 403 mV, a short-circuit current density of 28.51 mA cm-2 and a fill factor of 46.83% after Ge doping.

19.
Transl Vis Sci Technol ; 4(5): 2, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26347016

ABSTRACT

PURPOSE: To enhance the rapid assessment of geographic atrophy (GA) across the macula in a single projection image generated from three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) scans by introducing a novel restricted summed-area projection (RSAP) technique. METHODS: We describe a novel en face GA visualization technique, the RSAP, by restricting the axial projection of SD-OCT images to the regions beneath the Bruch's membrane (BM) boundary and also considering the choroidal vasculature's influence on GA visualization. The technique analyzes the intensity distribution beneath the retinal pigment epithelium (RPE) layer to fit a cross-sectional surface in the sub-RPE region. The area is taken as the primary GA projection. A median filter is then adopted to smooth the generated GA projection image. The RSAP technique was evaluated in 99 3D SD-OCT data sets from 27 eyes of 21 patients presenting with advanced nonexudative age-related macular degeneration and GA. We used the mean difference between GA and background regions and GA separability metric to measure GA contrast and distinction in the generated images, respectively. We compared our results with two existing GA projection techniques, the summed-voxel projection (SVP) and Sub-RPE Slab techniques. RESULTS: Comparative results demonstrate that the RSAP technique is more effective in displaying GA than the SVP and Sub-RPE Slab. The average of the mean difference between GA and background regions and the GA separability based on SVP, Sub-RPE Slab, and RSAP were 0.129/0.880, 0.238/0.919, and 0.276/0.938, respectively. CONCLUSIONS: The RSAP technique was more effective for GA visualization than the conventional SVP and Sub-RPE Slab techniques. Our technique decreases choroidal vasculature influence on GA projection images by analyzing the intensity distribution characteristics in sub-RPE regions. The generated GA projection image with the RSAP technique has improved contrast and distinction. TRANSLATIONAL RELEVANCE: Our method for automated generation of GA projection images from SD-OCT images may improve the visualization of the macular abnormalities and the management of GA.

20.
J Nanosci Nanotechnol ; 15(4): 3182-6, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26353559

ABSTRACT

Ni-Zn ferrites Ni(x)Zn1-xFe2O4 (x = 0.2, 0.4, 0.5, 0.6, 0.8) powders were synthesized by sol-gel technique. Structural, infrared and magnetic properties of samples were investigated. Spinel structural characteristics are shown by XRD spectra and the morphologies observed by atomic force microscopy demonstrate the samples are in nano-range. For all the samples, FTIR spectra exhibit obvious v1 infrared absorbing bands, in the range 500-600 cm-1, corresponding to intrinsic stretching vibrations of the metal ions at the tetrahedral site (Td), Mtetra <--> O. Furthermore, the central position of v1 band is tending to shift to larger wave numbers with the increasing Ni contents in the samples. For the samples Ni(x)Zn1-xFe2O4 (x = 0.2, 0.4), the v2 infrared absorbing bands, in the range 450-385 cm(-1), corresponding to stretching vibrations of the metal ions at the octahedral-metal stretching (Oh), Mocta <--> O, were also observed. However, for samples Ni(x)Zn1-xFe2O4 with higher Ni content (x = 0.5, 0.6, 0.8), the v2 infrared absorbing bands were obscure. The magnetic hysteretic loops at room temperature obtained from vibration samples magnetometer reveal the soft magnetism of the samples. The sample with lowest Ni content, Ni0.2Zn0.8Fe2O4, presents much higher saturation field than the other samples. The coercive field rises with increased Ni content, which is ascribed to the increased magnetocrystalline anisotropy constant with Ni content.

SELECTION OF CITATIONS
SEARCH DETAIL
...