Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol Heart Vasc ; 52: 101414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38694269

ABSTRACT

Ferroptosis is a newly discovered form of programmed cell death triggered by intracellular iron overload, which leads to the accumulation of lipid peroxides in various cells. It has been implicated in the pathogenesis and progression of various diseases, including tumors, neurological disorders, and cardiovascular diseases. The intricate mechanism underlying ferroptosis involves an imbalance between the oxidation and antioxidant systems, disturbances in iron metabolism, membrane lipid peroxidation, and dysregulation of amino acid metabolism. We highlight the key molecular mechanisms governing iron overload and ferroptosis, and discuss potential molecular pathways linking ferroptosis with arrhythmias.

2.
Sci Rep ; 6: 34339, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731318

ABSTRACT

Parkinson's disease (PD) is one common neurodegenerative disease caused by a significant loss of midbrain dopaminergic neurons. Previous reports showed that 7, 8- dihydroxyflavone (7, 8-DHF) as a potent TrkB agonist can mimic BDNF and play neuroprotective roles for mouse dopaminergic neurons. Nonetheless, the safety and neuroprotective effects are unclear in monkey models of PD. Here, we find that 7, 8-DHF could be absorbed and metabolized into 7-hydroxy-8-methoxyflavone through oral administration in monkeys. The half-life time of 7, 8-DHF in monkey plasma is about 4-8 hrs. Furthermore, these monkeys maintain health state throughout the course of seven-month treatments of 7, 8-DHF (30 mg/kg/day). Importantly, 7, 8-DHF treatments can prevent the progressive degeneration of midbrain dopaminergic neurons by attenuating neurotoxic effects of MPP+ and display strong neuroprotective effects in monkeys. Our study demonstrates that this promising small molecule may be transited into a clinical useful pharmacological agent.


Subject(s)
Dopaminergic Neurons/metabolism , Flavanones/pharmacology , MPTP Poisoning , Mesencephalon/metabolism , Neuroprotective Agents/pharmacology , Animals , Dopaminergic Neurons/pathology , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Macaca fascicularis , Mesencephalon/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...