Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 25(21): 21195-21204, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29777494

ABSTRACT

In the present work, the dissipation kinetics and final residue levels of thifluzamide in the maize field ecosystem were investigated. Using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction combined with liquid chromatography-tandem mass spectrometric detection (LC-MS/MS), a rapid, sensitive, efficient, and reliable method for extraction and quantitative analysis of thifluzamide residues in maize grain, maize plant, and soil was developed. Satisfactory recoveries of 78.7-97.0% were achieved with relative standard deviations (RSDs) in the range of 1.6 to 8.2%. The limits of detection (LODs) and the limit of quantification (LOQ) were 0.002-0.005 and 0.010 mg kg-1, respectively. The dissipation kinetics of thifluzamide in maize plant was well fitted by the first-order kinetic model with short half-lives of 0.19-0.22 days, while thifluzamide degraded slowly in soil with half-lives of 4.56-15.85 days. The final residues in maize grain, maize plant, and soil samples collected at the milk stage and the physiological maturity stage were no more than 0.010, 0.807, and 0.278 mg kg-1, respectively. Given that no maximum residue limit (MRL) for thifluzamide in maize has been established, the safety of this fungicide application was estimated by a dietary risk assessment. The hazard quotient was 0.03%, which was substantially less than 1, indicating that the long-term risk induced by the thifluzamide application on maize at the recommended dose is negligible. These results help governments to develop regulations for the safe use of thifluzamide.


Subject(s)
Anilides/chemistry , Chromatography, Liquid/methods , Pesticide Residues/chemistry , Soil Pollutants/chemistry , Tandem Mass Spectrometry/methods , Thiazoles/chemistry , Zea mays/growth & development , Ecosystem , Half-Life , Kinetics , Limit of Detection , Soil/chemistry , Zea mays/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...