Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(27): 17284-91, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27315228

ABSTRACT

The ongoing search for cheap and efficient hydrogen evolution reaction (HER) electrocatalysts to replace currently used catalysts based on Pt or its alloys has been considered as an prevalent strategy to produce renewable and clean hydrogen energy. Herein, inspired by the neuron structure in biological systems, we demonstrate a novel fabrication strategy via a simple two-step method for the synthesis of a neuronlike interpenetrative nanocomposite network of Co-P embedded in porous carbon nanotubes (NIN-Co-P/PCNTs). It is found that the interpenetrative network provides a natural transport path to accelerate the hydrogen production process. The embedded-type structure improves the utilization ratio of Co-P and the hollow, tubelike, and porous structure of PCNTs further promote charge and reactant transport. These factors allow the as-prepared NIN-Co-P/PCNTs to achieve a onset potential low to 43 mV, a Tafel slope as small as 40 mV/decade, an excellent stability, and a high turnover frequency value of 3.2 s(-1) at η = 0.2 V in acidic conditions. These encouraging properties derived from the neuronlike interpenetrative network structure might offer new inspiration for the preparation of more nanocomposites for applications in other catalytic and optoelectronic field.

2.
ACS Appl Mater Interfaces ; 8(5): 3543-50, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26765150

ABSTRACT

Electrochemically splitting water for hydrogen evolution reaction (HER) has been viewed as a promising approach to produce renewable and clean hydrogen energy. However, searching for cheap and efficient HER electrocatalysts to replace the currently used Pt-based catalysts remains an urgent task. Herein, we develop a one-step carbon nanotube (CNT) assisted synthesis strategy with CNTs' strong adsorbability to mediate the growth of subnanometer-sized MoS(x) on CNTs. The subnanometer MoS(x)-CNT hybrids achieve a low overpotential of 106 mV at 10 mA cm(-2), a small Tafel slope of 37 mV per decade, and an unprecedentedly high turnover frequency value of 18.84 s(-1) at η = 200 mV among all reported non-Pt catalysts in acidic conditions. The superior performance of the hybrid catalysts benefits from the presence of a higher number of active sites and the abundant exposure of unsaturated S atoms rooted in the subnanometer structure, demonstrating a new class of subnanometer-scale catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL