Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Brain Res Bull ; 213: 110981, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777132

ABSTRACT

INTRODUCTION: The medial prefrontal cortex (mPFC) forms output pathways through projection neurons, inversely receiving adjacent and long-range inputs from other brain regions. However, how afferent neurons of mPFC are affected by chronic stress needs to be clarified. In this study, the effects of chronic restraint stress (CRS) on the distribution density of mPFC dendrites/dendritic spines and the projections from the cortex and subcortical brain regions to the mPFC were investigated. METHODS: In the present study, C57BL/6 J transgenic (Thy1-YFP-H) mice were subjected to CRS to establish an animal model of depression. The infralimbic (IL) of mPFC was selected as the injection site of retrograde AAV using stereotactic technique. The effects of CRS on dendrites/dendritic spines and afferent neurons of the mPFC IL were investigaed by quantitatively assessing the distribution density of green fluorescent (YFP) positive dendrites/dendritic spines and red fluorescent (retrograde AAV recombinant protein) positive neurons, respectively. RESULTS: The results revealed that retrograde tracing virus labeled neurons were widely distributed in ipsilateral and contralateral cingulate cortex (Cg1), second cingulate cortex (Cg2), prelimbic cortex (PrL), infralimbic cortex, medial orbital cortex (MO), and dorsal peduncular cortex (DP). The effects of CRS on the distribution density of mPFC red fluorescence positive neurons exhibited regional differences, ranging from rostral to caudal or from top to bottom. Simultaneously, CRS resulted a decrease in the distribution density of basal, proximal and distal dendrites, as well as an increase in the loss of dendritic spines of the distal dendrites in the IL of mPFC. Furthermore, varying degrees of red retrograde tracing virus fluorescence signals were observed in other cortices, amygdala, hippocampus, septum/basal forebrain, hypothalamus, thalamus, mesencephalon, and brainstem in both ipsilateral and contralateral brain. CRS significantly reduced the distribution density of red fluorescence positive neurons in other cortices, hippocampus, septum/basal forebrain, hypothalamus, and thalamus. Conversely, CRS significantly increased the distribution density of red fluorescence positive neurons in amygdala. CONCLUSION: Our results suggest a possible mechanism that CRS leads to disturbances in synaptic plasticity by affecting multiple inputs to the mPFC, which is characterized by a decrease in the distribution density of dendrites/dendritic spines in the IL of mPFC and a reduction in input neurons of multiple cortices to the IL of mPFC as well as an increase in input neurons of amygdala to the IL of mPFC, ultimately causing depression-like behaviors.


Subject(s)
Depression , Mice, Inbred C57BL , Mice, Transgenic , Prefrontal Cortex , Restraint, Physical , Stress, Psychological , Animals , Prefrontal Cortex/pathology , Prefrontal Cortex/metabolism , Stress, Psychological/pathology , Stress, Psychological/metabolism , Mice , Depression/pathology , Male , Dendritic Spines/pathology , Disease Models, Animal , Afferent Pathways , Dendrites/pathology , Dendrites/metabolism , Neurons, Afferent/pathology , Neurons, Afferent/metabolism , Brain/pathology , Brain/metabolism
2.
Article in English | MEDLINE | ID: mdl-35939131

ABSTRACT

Acoustic communication plays a vital role in frog reproduction. In most anuran species, long-distance sound communication is one-way from males to females; during the reproductive season, males produce species-specific advertisement calls to attract gravid females, and females are generally silent but perform phonotactic movements that lead to amplexus. One exception is the concave-eared torrent frog (Odorrana tormota). In this species, females produce courtship calls that elicit antiphonal vocalizations by males, followed by precise phonotactic movements. The large odorous frog O. graminea (previously Odorrana livida) in southern China is subject to the same environmental constraints as O. tormota, with which it is sympatric; it is unclear whether their sound communication is one-way or bidirectional. Here, we provide the first data on female O. graminea vocalizations and their functions. Using playbacks of female calls, we conducted acoustic behavioral experiments in the laboratory in response to which males emitted single- or multi-note antiphonal calls with a varying fundamental frequency. Moreover, they were attracted to female call playbacks, exhibiting precise phonotaxis. The female courtship call-male response interaction thus forms a duet between partners of a receptive pair. These results demonstrate that this unique communication system likely reflects an adaptation to an environment in which short-distance communication is at a premium given the high levels of ambient noise.


Subject(s)
Courtship , Ranidae , Male , Female , Animals , Ranidae/physiology , Anura/physiology , Sound , Noise , Vocalization, Animal/physiology
3.
Horm Behav ; 135: 105040, 2021 09.
Article in English | MEDLINE | ID: mdl-34358948

ABSTRACT

Ovarian hormone deprivation is associated with mood disorders, such as depression, and estradiol therapy is significantly more effective than placebos in treating major depression associated with menopause onset. However, the effect of estradiol on neuronal plasticity and its mechanisms remain to be further elucidated. In this study, behavioral assessments were used to examine the antidepressant effect of estradiol in ovariectomized (OVX) B6.Cg-TgN (Thy-YFP-H)-2Jrs transgenic mice on chronic restraint stress (CRS)-induced dendrite and dendritic spine loss; Yellow fluorescent protein (YFP) is characteristically expressed in excitatory neurons in transgenic mice, and its three-dimensional images were used to evaluate the effect of estradiol on the density of different types of dendritic spines. Quantification and distribution of cofilin1 and p-cofilin1 were determined by qPCR, Western blots, and immunohistochemistry, respectively. The results revealed that treatment with estradiol or clomipramine significantly improved depression-like behaviors. Estradiol treatment also significantly upregulated the dendritic density in all areas examined and increased the density of filopodia-type, thin-type and mushroom-type spines in the hippocampal CA1 and elevated the thin-type and mushroom-type spine density in the PFC. Consistent with these changes, estradiol treatment significantly increased the density of p-cofilin1 immunopositive dendritic spines. Thus, these data reveal a possible estradiol antidepressant mechanism, in that estradiol promoted the phosphorylation of cofilin1 and reduced the loss of dendrites and dendritic spines, which of these dendritic spines include not only immature spines such as filopodia-type, but also mature spines such as mushroom-type, and attenuated the depression-like behavior.


Subject(s)
Dendritic Spines , Estradiol , Animals , Antidepressive Agents , Estradiol/pharmacology , Female , Hippocampus , Mice , Mice, Transgenic
4.
Neurochem Res ; 46(3): 660-674, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33392910

ABSTRACT

Depression afflicts more than 300 million people worldwide, but there is currently no universally effective drug in clinical practice. In this study, chronic restraint stress (CRS)-induced mice depression model was used to study the antidepressant effects of resveratrol and its mechanism. Our results showed that resveratrol significantly attenuated depression-like behavior in mice. Consistent with behavioral changes, resveratrol significantly attenuated CRS-induced reduction in the density of dendrites and dendritic spines in both hippocampus and medial prefrontal cortex (mPFC). Meanwhile, in hippocampus and mPFC, resveratrol consistently alleviated CRS-induced cofilin1 activation by increasing its ser3 phosphorylation. In addition, cofilin1 immunofluorescence distribution in neuronal inner peri-membrane in controls, and cofilin1 diffusely distribution in the cytoplasm in CRS group were common in hippocampus. However, the distribution of cofilin1 in mPFC was reversed. Pearson's correlation analysis revealed that there was a significant positive correlation found between the sucrose consumption in sucrose preference test and the dendrite density in multiple sub-regions of hippocampus and mPFC, and a significant negative correlation between the immobility time in tail suspension test and the dendrite/dendritic spine density in several different areas of hippocampus and mPFC. P-cofilin1 was significantly positively correlated with the overall dendritic spine density in mPFC as well as with the overall dendrite density or BDNF in the hippocampus. Our results suggest that the BDNF/cofilin1 pathway, in which cofilin1 may be activated in a brain-specific manner, was involved in resveratrol's attenuating the dendrite and dendritic spine loss and behavioral abnormality.


Subject(s)
Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Cofilin 1/metabolism , Dendritic Spines/drug effects , Depression/drug therapy , Resveratrol/therapeutic use , Animals , Hippocampus/cytology , Hippocampus/drug effects , Male , Mice, Transgenic , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Restraint, Physical , Stress, Psychological
5.
Acta Neurobiol Exp (Wars) ; 80(3): 225-244, 2020.
Article in English | MEDLINE | ID: mdl-32990282

ABSTRACT

Alzheimer's disease (AD) has become the most prevalent neurodegenerative disorder. Given the pathogenesis of AD is unclear, there is currently no drug approved to halt or delay the progression of AD. Therefore, it is pressing to explore new targets and drugs for AD. In China, polyphenolic Chinese herbal medicine has been used for thousands of years in clinical application, and no toxic effects have been reported. In the present study, using D­galactose and aluminum­induced rat model, the effects of paeonol on AD were validated via the Morris water maze test, open field test, and elevated plus maze test. Neuronal morphology in frontal cortex was assessed using ImageJ's Sholl plugin and RESCONSTRUCT software. RhoA/Rock2/Limk1/cofilin1 signaling pathway­related molecules were determined by Western blotting. Cofilin1 and p­cofilin1 were analyzed by immunofluorescence. Results showed that pre­treatment with paeonol attenuated D­galactose and aluminum­induced behavioral dysfunction and AD­like pathological alterations in the frontal cortex. Accompanied by these changes were the alterations in the dendrite and dendritic spine densities, especially the mushroom­type and filopodia­type spines in the apical dendrites, as well as actin filaments. In addition, the activity and intracellular distribution of cofilin1 and the molecules RhoA/Rock2/Limk1 that regulate the signaling pathway for cofilin1 phosphorylation have also changed. Our data suggests that paeonol may be through reducing Aß levels to alleviate the loss of fibrillar actin and dendrites and dendritic spines via the Rho/Rock2/Limk1/cofilin1 signaling pathway in the frontal cortex, and ultimately improving AD­like behavior.


Subject(s)
Aluminum/pharmacology , Alzheimer Disease/metabolism , Dendritic Spines/metabolism , Galactose/pharmacology , rhoA GTP-Binding Protein/metabolism , Alzheimer Disease/pathology , Animals , Dendritic Spines/drug effects , Dendritic Spines/pathology , Hippocampus/drug effects , Lim Kinases/drug effects , Lim Kinases/metabolism , Neurons/drug effects , Phosphorylation/drug effects , rhoA GTP-Binding Protein/drug effects
6.
Neuroscience ; 424: 72-85, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31785358

ABSTRACT

This study examines binaural response properties and sensitivity to interaural level difference of single neurons in the primary auditory cortex (AC) of the big brown bat, Eptesicus fuscus under earphone stimulation conditions. Contralateral sound stimulation always evoked response from all 306 AC neurons recorded but ipsilateral sound stimulation either excited, inhibited or did not affect their responses. High best frequency (BF) neurons typically had high minimum threshold (MT) and low BF neurons had low MT. However, both BF and MT did not correlate with their recording depth. The BF of these AC neurons progressively changed from high to low along the anteromedial-posterolateral axis of the AC. Their number of impulses and response latency varied with sound level and inter-aural level differences (ILD). Their number of impulses typically increased either monotonically or non-monotonically to a maximum and the latency shortened to a minimum at a specific sound level. Among 205 AC neurons studied at varied ILD, 178 (87%) and 127 (62%) neurons discharged maximally and responded with the shortest response latency at a specific ILD, respectively. Neurons sequentially isolated within an orthogonal electrode puncture shared similar BF, MT, binaurality and ILD curves. However, the response latency of these AC neurons progressively shortened with recording depth. Species-specific difference among this bat, the mustached bat and the pallid bat is discussed in terms of frequency and binaurality representation in the AC.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/cytology , Auditory Cortex/physiology , Auditory Threshold/physiology , Neurons/physiology , Animals , Chiroptera , Female , Male
7.
Sci Rep ; 6: 27103, 2016 06 27.
Article in English | MEDLINE | ID: mdl-27345957

ABSTRACT

Acoustic communication in noisy environments presents a significant challenge for vocal animals because noise can interfere with animal acoustic signals by decreasing signal-to-noise ratios and masking signals. Birds and mammals increase call intensity or frequency as noise levels increase, but it is unclear to what extend this behavior is shared by frogs. Concave-eared torrent frogs (Odorrana tormota) have evolved the capacity to produce various calls containing ultrasonic harmonics and to communicate beside noisy streams. However, it is largely unclear how frogs regulate vocalization in response to increasing noise levels. We exposed male frogs to various levels of noise with playback of conspecific female courtship calls and recorded antiphonal signals and spontaneous short calls. Males were capable of rapidly adjusting fundamental frequency and amplitude of antiphonal signals as noise levels increased. The increment in fundamental frequency and amplitude was approximately 0.5 kHz and 3 dB with every 10 dB increase in noise level, indicating the presence of noise-dependent signal characteristics. Males showed the noise-tolerant adaption in response to female calls in noise level from 40 to 90 dB SPL. The results suggest that the noise-dependent signal characteristics in O. tormota have evolved as a strategy to cope with varying torrent noise.


Subject(s)
Ranidae/physiology , Vocalization, Animal/physiology , Animals , Courtship , Female , Male , Noise , Signal-To-Noise Ratio , Ultrasonic Waves
8.
Article in English | MEDLINE | ID: mdl-26260392

ABSTRACT

Ambient noise influences acoustic communication in animals. The concave-eared frogs (Odorrana tormota) produce high-frequency sound signals to avoid potential masking from noise. However, whether environmental noise has effect on the high-frequency hearing of frogs is largely unclear. By measuring the auditory evoked near-field potentials (AENFPs) from the torus semicircularis of the midbrain at frequencies 1-23 kHz in the presence of three noise levels, we found no significant difference in the peak-to-peak amplitude, threshold and latency of AENFP between low-level (35 dB SPL) background noise and mid-level (65 dB SPL) broadcast natural noise. For a natural noise level of 85 dB SPL, AENFP amplitude decreased and threshold and latency increased at frequencies 3-13 kHz. Spike counts evoked by stimuli at the best excitatory frequency under 85 dB SPL natural noise exposure were lower in 7-kHz CF neurons than in exposures to 35 and 65 dB SPL noise. However spike counts were similar for 14- and 20-kHz CF neurons at the three exposure levels. These findings indicate that environmental noise does not mask the responses of high-frequency tuned auditory neurons, and suggest that the acoustic communication system of O. tormota is efficiently adapted to noisy habitats.


Subject(s)
Anura/physiology , Environment , Hearing/physiology , Noise , Acoustic Stimulation , Acoustics , Analysis of Variance , Animals , Auditory Threshold , Evoked Potentials, Auditory/physiology
9.
Article in English | MEDLINE | ID: mdl-24510208

ABSTRACT

Acoustic communication is an important behavior in frog courtship. Male and female frogs of most species, except the concave-eared torrent frog Odorrana tormota, have largely similar audiograms. The large odorous frogs (Odorrana graminea) are sympatric with O. tormota, but have no ear canals. The difference in hearing between two sexes of the frog is unknown. We recorded auditory evoked near-field potentials and single-unit responses from the auditory midbrain (the torus semicircularis) to determine auditory frequency sensitivity and threshold. The results show that males have the upper frequency limit at 24 kHz and females have the upper limit at 16 kHz. The more sensitive frequency range is 3-15 kHz for males and 1-8 kHz for females. Males have the minimum threshold at 11 kHz (58 dB SPL), higher about 5 dB than that at 3 kHz for females. The best excitatory frequencies of single units are mostly between 3 and 5 kHz in females and at 7-8 kHz in males. The underlying mechanism of auditory sexual differences is discussed.


Subject(s)
Anura/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/physiology , Mesencephalon/physiology , Acoustic Stimulation , Animals , Auditory Threshold/physiology , Female , Male , Microelectrodes , Sex Factors , Time Factors
10.
Hear Res ; 283(1-2): 70-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22146424

ABSTRACT

Three species of anuran amphibians (Odorrana tormota, Odorrana livida and Huia cavitympanum) have recently been found to detect ultrasounds. We employed immunohistochemistry and confocal microscopy to examine several morphometrics of the inner ear of these ultrasonically sensitive species. We compared morphological data collected from the ultrasound-detecting species with data from Rana pipiens, a frog with a typical anuran upper cut-off frequency of ∼3 kHz. In addition, we examined the ears of two species of Lao torrent frogs, Odorrana chloronota and Amolops daorum, that live in an acoustic environment approximating those of ultrasonically sensitive frogs. Our results suggest that the three ultrasound-detecting species have converged on small-scale functional modifications of the basilar papilla (BP), the high-frequency hearing organ in the frog inner ear. These modifications include: 1. reduced BP chamber volume, 2. reduced tectorial membrane mass, 3. reduced hair bundle length, and 4. reduced hair cell soma length. While none of these factors on its own could account for the US sensitivity of the inner ears of these species, the combination of these factors appears to extend their hearing bandwidth, and facilitate high-frequency/ultrasound detection. These modifications are also seen in the ears of O. chloronota, suggesting that this species is a candidate for high-frequency hearing sensitivity. These data form the foundation for future functional work probing the physiological bases of ultrasound detection by a non-mammalian ear.


Subject(s)
Ear, Inner/anatomy & histology , Ear, Inner/physiology , Hearing , Rana pipiens/anatomy & histology , Rana pipiens/physiology , Ultrasonics , Actins/analysis , Adaptation, Physiological , Amphibian Proteins/analysis , Animals , Biomarkers/analysis , Ear, Inner/chemistry , Immunohistochemistry , Male , Microscopy, Confocal , Myosin Heavy Chains/analysis , Organ of Corti/anatomy & histology , Organ of Corti/physiology , Species Specificity
11.
Article in English | MEDLINE | ID: mdl-21744010

ABSTRACT

We present the first data on the vocalizations of large odorous frogs (Odorrana graminea, previously Odorrana livida), from southern China. The males produce diverse broadband signals most of which contain ultrasonic harmonics. Six basic call-types were identified based on the number of call notes, fundamental frequency, call/note duration, frequency modulation patterns and spectral composition. O. graminea is one of only a few non-mammalian vertebrates able to detect ultrasound, but its tympanic membranes are not recessed. These results should stimulate further studies to provide new insights into the mechanisms underlying high-frequency communication in anurans.


Subject(s)
Odorants , Ranidae/physiology , Ultrasonics , Vocalization, Animal , Animals , Male , Sound Spectrography , Time Factors
12.
Neuroreport ; 22(11): 530-4, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21666517

ABSTRACT

The primary auditory cortex (AI) is implicated in coding sound location, as revealed by behavior-lesion experiments, but our knowledge about the functional organization and laminar specificity of neural spatial sensitivity is still very limited. Using single-unit recordings in mouse AI, we show that (i) an inverse relationship between onset latency and spike count is consistently observed when all the azimuthal points are taken; (ii) a substantial proportion of penetrations perpendicular to the AI surface showed columnar organization of best azimuths; (iii) the preferred azimuth range of AI neurons demonstrated layer-specific distribution pattern. Our findings suggest that similar to other response properties, the manner of sound space information processing in the auditory cortex is also layer dependent.


Subject(s)
Auditory Cortex/physiology , Sound Localization/physiology , Acoustic Stimulation , Animals , Auditory Cortex/cytology , Auditory Pathways/physiology , Data Interpretation, Statistical , Electrophysiological Phenomena , Female , Mice , Mice, Inbred BALB C , Microelectrodes , Neurons/physiology
13.
Nat Commun ; 2: 342, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21673663

ABSTRACT

Acoustic communication has an important role in the reproductive behaviour of anurans. Although males of the concave-eared frog (Odorrana tormota) have shown an ultrasonic communication capacity adapted to the intense, predominately low-frequency ambient noise from local streams, whether the females communicate with ultrasound remains unclear. Here we present evidence that females exhibit no ultrasonic sensitivity. Acoustic playback experiments show that the calls from male evoke phonotaxis and vocal responses from gravid females, whereas the ultrasonic components (frequencies above 20 kHz) of the calls do not elicit any phonotaxis or vocalization in the females. Electrophysiological recordings from the auditory midbrain reveal an upper frequency limit at 16 kHz in females. Laser Doppler vibrometer measurements show that the velocity amplitude of the tympanic membranes peaks at 5 kHz in females and at ∼7 kHz in males. The auditory sex differences in O. tormota imply that ultrasonic hearing has evolved only in male anurans.


Subject(s)
Animal Communication , Biological Evolution , Hearing/physiology , Ranidae/physiology , Sex Characteristics , Ultrasonics , Acoustic Stimulation , Animals , Behavior, Animal/physiology , Electrophysiology , Female , Male , Mesencephalon/physiology , Ranidae/anatomy & histology , Tympanic Membrane/physiology
14.
Article in English | MEDLINE | ID: mdl-21298385

ABSTRACT

The concave-eared torrent frog, Odorrana tormota, has evolved the extraordinary ability to communicate ultrasonically (i.e., using frequencies > 20 kHz), and electrophysiological experiments have demonstrated that neurons in the frog's midbrain (torus semicircularis) respond to frequencies up to 34 kHz. However, at this time, it is unclear which region(s) of the torus and what other brainstem nuclei are involved in the detection of ultrasound. To gain insight into the anatomical substrate of ultrasound detection, we mapped expression of the activity-dependent gene, egr-1, in the brain in response to a full-spectrum mating call, a filtered, ultrasound-only call, and no sound. We found that the ultrasound-only call elicited egr-1 expression in the superior olivary and principal nucleus of the torus semicircularis. In sampled areas of the principal nucleus, the ultrasound-only call tended to evoke higher egr-1 expression than the full-spectrum call and, in the center of the nucleus, induced significantly higher egr-1 levels than the no-sound control. In the superior olivary nucleus, the full-spectrum and ultrasound-only calls evoked similar levels of expression that were significantly greater than the control, and egr-1 induction in the laminar nucleus showed no evidence of acoustic modulation. These data suggest that the sampled areas of the principal nucleus are among the regions sensitive to ultrasound in this species.


Subject(s)
Brain Mapping , Brain Stem/physiology , DNA, Single-Stranded/biosynthesis , Gene Expression Regulation , Genes, Immediate-Early/physiology , Ranidae/genetics , Acoustic Stimulation , Animals , Gene Expression , Gene Expression Profiling , In Situ Hybridization , Male , Polymerase Chain Reaction , Ranidae/physiology , Ultrasonics
15.
Neuroreport ; 19(15): 1445-9, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18797295

ABSTRACT

Nonmonotonic intensity response neurons referred as amplitude-tuned neurons are considered to be created by high-threshold inhibition in auditory system. Very limited information, however, is available on how the inhibition works for amplitude-tuned neurons. We studied the temporal response properties of these neurons with or without iontophoresis of bicuculline (gamma-aminobutyric acid A antagonist). In most neurons, the firing durations gradually reduced with the increasing amplitudes beyond the best amplitudes. Bicuculline application selectively blocked the inhibition of the sustained responses to high amplitudes and abolished the nonmonotonic intensity response properties. Our results suggest that a temporally delayed inhibition, whose latency reduced related to excitation with the increasing amplitude, is responsible for the creation of about 71% amplitude-tuned neurons in mouse inferior colliculus.


Subject(s)
Evoked Potentials, Auditory/physiology , Inferior Colliculi/physiology , Loudness Perception/physiology , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neurons/physiology , Acoustic Stimulation/methods , Animals , Auditory Perception/drug effects , Auditory Perception/physiology , Bicuculline/pharmacology , Evoked Potentials, Auditory/drug effects , Female , GABA Antagonists/pharmacology , Inferior Colliculi/cytology , Inferior Colliculi/drug effects , Iontophoresis , Loudness Perception/drug effects , Mice , Mice, Inbred BALB C , Neurons/drug effects , Reaction Time/drug effects , Reaction Time/physiology , Sound Localization/physiology , Time Factors
16.
Proc Natl Acad Sci U S A ; 105(31): 11014-9, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18658240

ABSTRACT

Vertebrates can modulate the sound levels entering their inner ears in the face of intense external sound or during their own vocalizations. Middle ear muscle contractions restrain the motion of the middle ear ossicles, attenuating the transmission of low-frequency sound and thereby protecting the hair cells in the inner ear. Here we show that the Chinese concave-eared torrent frog, Odorrana tormota, can tune its ears dynamically by closing its normally open Eustachian tubes. Contrary to the belief that the middle ear in frogs permanently communicates with the mouth, O. tormota can close this connection by contraction of the submaxillary and petrohyoid muscles, drastically reducing the air volume behind the eardrums. Mathematical modeling and laser Doppler vibrometry revealed that the reduction of this air volume increases the middle ear impedance, resulting in an up to 20 dB gain in eardrum vibration at high frequencies (10-32 kHz) and 26 dB attenuation at low frequencies (3-10 kHz). Eustachian tube closure was observed in the field during calling and swallowing. Besides a potential role in protecting the inner ear from intense low-frequency sound and high buccal air pressure during calling, this previously unrecognized vertebrate mechanism may unmask the high-frequency calls of this species from the low-frequency stream noise which dominates the environment. This mechanism also protects the thin tympanic membranes from injury during swallowing of live arthropod prey.


Subject(s)
Ear, Inner/physiology , Eustachian Tube/physiology , Hearing/physiology , Ranidae/physiology , Ultrasonics , Animals , Models, Biological , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Physical Stimulation , Vibration
17.
Nature ; 453(7197): 914-6, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18469804

ABSTRACT

Sound communication plays a vital role in frog reproduction, in which vocal advertisement is generally the domain of males. Females are typically silent, but in a few anuran species they can produce a feeble reciprocal call or rapping sounds during courtship. Males of concave-eared torrent frogs (Odorrana tormota) have demonstrated ultrasonic communication capacity. Although females of O. tormota have an unusually well-developed vocal production system, it is unclear whether or not they produce calls or are only passive partners in a communication system dominated by males. Here we show that before ovulation, gravid females of O. tormota emit calls that are distinct from males' advertisement calls, having higher fundamental frequencies and harmonics and shorter call duration. In the field and in a quiet, darkened indoor arena, these female calls evoke vocalizations and extraordinarily precise positive phonotaxis (a localization error of <1 degrees ), rivalling that of vertebrates with the highest localization acuity (barn owls, dolphins, elephants and humans). The localization accuracy of O. tormota is remarkable in light of their small head size (interaural distance of <1 cm), and suggests an additional selective advantage of high-frequency hearing beyond the ability to avoid masking by low-frequency background noise.


Subject(s)
Courtship , Motor Activity/physiology , Ranidae/physiology , Sex Characteristics , Ultrasonics , Vocalization, Animal/physiology , Animals , China , Female , Humans , Male , Sound
18.
Article in English | MEDLINE | ID: mdl-16583231

ABSTRACT

The piebald odorous frog (Odorrana schmackeri), the large odorous frog (Odorrana livida) and the concave-eared torrent frog (Amolops tormotus) are sympatric species living near the same torrent streams in the vicinity of Mt. Huangshan, China. A recent study demonstrated that A. tormotus can use sound signals involving ultrasonic components for communication in a noisy environment, and another sympatric species, O. livida, can also perceive ultrasonic sound. Here we report data on the hearing range of O. schmackeri by studying auditory evoked potentials and single-unit data from the torus semicircularis. This frog exhibits its two most sensitive peaks at 2 kHz and 3.5-4.0 kHz with thresholds <42 dB SPL, with an upper frequency limit of hearing at 8.5 kHz with threshold of 87 dB SPL. The upper limit is much lower than those of O. livida and A. tormotus, at 22 and 34 kHz, respectively. It suggests that sympatric species may respond differently to similar environmental selection pressures sculpting auditory communication systems.


Subject(s)
Auditory Perception/physiology , Auditory Threshold/physiology , Hearing/physiology , Ranidae/physiology , Acoustic Stimulation , Action Potentials/drug effects , Animals , Auditory Perception/radiation effects , Brain Stem/cytology , Brain Stem/physiology , Dose-Response Relationship, Radiation , Evoked Potentials, Auditory/physiology , Evoked Potentials, Auditory/radiation effects , Noise , Reaction Time/physiology , Reaction Time/radiation effects , Vocalization, Animal/physiology
19.
Nature ; 440(7082): 333-6, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16541072

ABSTRACT

Among vertebrates, only microchiropteran bats, cetaceans and some rodents are known to produce and detect ultrasounds (frequencies greater than 20 kHz) for the purpose of communication and/or echolocation, suggesting that this capacity might be restricted to mammals. Amphibians, reptiles and most birds generally have limited hearing capacity, with the ability to detect and produce sounds below approximately 12 kHz. Here we report evidence of ultrasonic communication in an amphibian, the concave-eared torrent frog (Amolops tormotus) from Huangshan Hot Springs, China. Males of A. tormotus produce diverse bird-like melodic calls with pronounced frequency modulations that often contain spectral energy in the ultrasonic range. To determine whether A. tormotus communicates using ultrasound to avoid masking by the wideband background noise of local fast-flowing streams, or whether the ultrasound is simply a by-product of the sound-production mechanism, we conducted acoustic playback experiments in the frogs' natural habitat. We found that the audible as well as the ultrasonic components of an A. tormotus call can evoke male vocal responses. Electrophysiological recordings from the auditory midbrain confirmed the ultrasonic hearing capacity of these frogs and that of a sympatric species facing similar environmental constraints. This extraordinary upward extension into the ultrasonic range of both the harmonic content of the advertisement calls and the frog's hearing sensitivity is likely to have co-evolved in response to the intense, predominantly low-frequency ambient noise from local streams. Because amphibians are a distinct evolutionary lineage from microchiropterans and cetaceans (which have evolved ultrasonic hearing to minimize congestion in the frequency bands used for sound communication and to increase hunting efficacy in darkness), ultrasonic perception in these animals represents a new example of independent evolution.


Subject(s)
Animal Communication , Ranidae/physiology , Ultrasonics , Acoustic Stimulation , Animals , Biological Evolution , Brain/physiology , China , Ear/physiology , Evoked Potentials, Auditory/physiology , Hearing/physiology , Male
20.
Article in English | MEDLINE | ID: mdl-16362304

ABSTRACT

Pair formation in the bushcricket Gampsocleis gratiosa is achieved through acoustic signalling by the male and phonotactic approaches of the female towards the calling song. On a walking belt in the free sound field, females tracked the position of the speaker broadcasting the male calling song with a remarkable precision, deviating by no more than 10 cm in either direction from the ideal course. Starting with stimulus angles of 6-10 degrees the females significantly turned to the correct side, and with stimulus angles greater than 25 degrees no incorrect turns were made. Using neurophysiological data on the directionality of the ear we calculated that with such stimulus angles the available binaural intensity difference is in the order of 1-2 dB. We developed a dichotic ear stimulation device for freely moving females with a cross-talk barrier of about 50 dB, which allowed to precisely apply small binaural intensity differences. In such a dichotic stimulation paradigm, females on average turned to the tronger stimulated side starting with a 1 dB difference between both ears. The significance of such a reliable lateralization behaviour with small interaural intensity differences for phonotactic behaviour under natural conditions is discussed.


Subject(s)
Acoustic Stimulation , Animal Communication , Behavior, Animal/physiology , Gryllidae/physiology , Animals , Auditory Pathways/physiology , Ear/physiology , Female , Male , Neurophysiology , Sexual Behavior, Animal/physiology , Sound Localization/physiology , Vocalization, Animal/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...