Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 345: 118564, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37421724

ABSTRACT

Rapid urbanization has led to a significant increase in water consumption and wastewater discharge. Balancing the relationship between urbanization development and water pollutants emissions is crucial for the sustainable development of the country. Given the uneven regional economic development and resource distribution in China, exploring the relationship between new urbanization and water pollution emissions cannot be limited to a single perspective such as population urbanization. This study developed a comprehensive evaluation index system for new urbanization level. Based on data from 30 provincial-level regions in China from 2006 to 2020, a Panel Threshold Regression Model (PTRM) was used to explore the nonlinear relationship between the new urbanization level and water pollution discharge. The research results show that China's new urbanization level (NUBL) and its subsystems, including population urbanization (P-NUBL), economic urbanization (E-NUBL), and spatial urbanization (SP-NUBL), all have a double threshold effect on chemical oxygen demand (COD) emissions. The promoting effect of NUBL and E-NUBL on COD emissions gradually increased in the later stage of the study. P-NUBL and SP-NUBL show a trend of inhibiting COD emissions after crossing the dual threshold values. Social urbanization (S-NUBL) and ecological urbanization (EL-NUBL) had no threshold effect, but they also had a promoting effect on COD emissions. In addition, the speed of new urbanization in eastern China was significantly faster than that in central and western China, with provinces such as Beijing, Shanghai, and Jiangsu being the first to enter the high threshold stage. The central region began to gradually enter the middle threshold stage, but provinces such as Hebei, Henan, and Anhui are still in the high pollution and high emission stage. The level of new urbanization in western China is relatively low, and future development should prioritize economic construction. Provinces with high thresholds and low water pollution emissions still need to be developed. The results of this study have important implications for promoting the harmonious development of water-saving and sustainable urban development in China.


Subject(s)
Urbanization , Water Pollutants , China , Water Pollution , Economic Development
2.
Environ Sci Pollut Res Int ; 30(14): 40298-40314, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36609756

ABSTRACT

As a critical way to realize the optimal allocation of water environment capacity resources in the basin, emission rights trading faces multiple uncertainties, making it extremely hard and challenging to formulate appropriate decisions and plans. Therefore, this study uses interval two-stage stochastic programming (ITSP) method to model the emission rights trading process with multiple uncertainties. It can promote the secondary optimal allocation of the emission rights between the demander and the supplier after the initial allocation. Externalities caused by environmental problems are internalized through the form of emission rights trading, thereby reducing the transaction costs and promoting the coordination and integrity of water pollution control among governments in a basin. Finally, the Yellow River basin is taken as an example for case analysis. The results show that the net revenue of emission rights system in the transaction status is better than that in the non-transaction status, and the average gap of net income reaches [171.031, 193.056] billion yuan. Under different reduction policies, the average water pollutant emission reduction in transaction status is [451.15, 628.34] thousand tons, which is generally less than [516.57, 670.05] thousand tons in non-transaction status. As policies get stricter and assimilative capacity of water bodies dwindles, reduction shrinks, leading to higher risks and economic loss from being unable to meet the discharge demand. When reduction policies are relatively loose and assimilative capacity is high, emission rights trading volume peaks. At this time, the trading volume of COD reached [29.05, 40.76] thousand tons, and that of NH3-N reached [3.74, 4.31] thousand tons. All these findings will offer insights for decision-makers on how to strike a balance between economic benefits and emission rights trading plans in the Yellow River basin.


Subject(s)
Rivers , Water Pollutants , Uncertainty , Models, Theoretical , Water , China
3.
Article in English | MEDLINE | ID: mdl-36674265

ABSTRACT

The initial emission rights allocation is the key measure to achieve the goal of total amount control and deepen the emission trading system. Although many studies have focused on the modeling of initial emission rights allocation, such as using game theory and multi-objective optimization methods, few studies have observed the hierarchical relationship of mutual interference and restriction between watershed management agency and local governments in each subarea during allocation. This relationship directly affects the rationality of the results of regional emission rights allocation. In this study, a leader-follower hierarchical decision model (LFHDM) for allocating initial emission rights in a basin is developed. Based on the bilevel programming approach, the model simulates the interactive decision-making process between the watershed management agency of the upper-level model (LFHDM-U) and the local government of the lower-level model (LFHDM-L) in the allocation under total amount control. A case study of China's Yellow River Basin is conducted to demonstrate the feasibility and practicality of the model. Findings reveal that, compared with the single-level model, the developed LFHDM has higher satisfaction with the allocation scheme. Under different scenarios, the overall satisfaction of the configuration schemes of COD and NH3-N in each province and autonomous region remains above 0.9. In addition, the allocation volumes of COD and NH3-N in each province of the Yellow River Basin in planning year increase with the enhancement of allowable assimilative capacity of water bodies, but the interval gap of satisfaction with allocation schemes gradually narrows. It shows that when the allowable assimilation capacity of a water body is low, the decision-making of the allocation scheme needs to be more cautious. Moreover, for the Yellow River Basin, apart from Qinghai and Sichuan, the task of reducing water pollutants in other provinces in the next few years is very arduous. The average reduction of total COD and NH3-N in the basin is about 48% and 46%, respectively.


Subject(s)
Water Pollutants , Game Theory , Rivers , Water , China
4.
Environ Sci Pollut Res Int ; 28(16): 20839-20853, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33405134

ABSTRACT

Water is a strategic and basic resource for industrial development. The efficient use of water resources is of great significance for the sustainable development of the economy and society. Dynamic SBM model could overcome the shortcomings of static models and reflect inter-temporal efficiency levels. The kernel density curve is used to fit the distribution pattern of industrial water use efficiency and describe its dynamic evolution. Empirical results show that from 2013 to 2017, under the meta-frontier, the industrial water use efficiency values of Beijing, Tianjin, Shandong, Inner Mongolia, and Shaanxi are all 1, and industrial water use efficiency is high, while the industrial water use efficiency values of Sichuan, Guizhou, Anhui, and other provinces are below 0.3, reflecting the low industrial water use efficiency. From 2013 to 2015, China's industrial water use efficiency generally shows a downward trend but begins to rise in the next 2 years. The kernel density curve generally exhibits a bimodal distribution trend and evolves from a "spike shape" to a "broad peak shape".


Subject(s)
Industry , Water , Beijing , China , Efficiency
5.
Article in English | MEDLINE | ID: mdl-32155816

ABSTRACT

Water rights trading is an effective way to optimize the allocation of water resources. However, the existing practice of water rights trading in China lacks any consideration of the practical value of the exchanged water. This deficiency may lead to disputes between transferor and transferee during the implementation of the water rights trading contract. This paper puts forward the concept of Standard Water (SW). First, getting the original value of exchanged water by the shadow price model based on input-output table; Second, based on the original value, building the economic profits or costs model to obtain the practical value of exchanged water; Third, establishing SW quantity measurement model according to the principle of rewarding excellence and punishing inferiority, so as to convert the water quantity of exchanged water into SW quantity. With the standardization method, this paper takes the water rights transaction between Dongyang City and Yiwu City in 2000 as an example to carry out case study, and provides policy recommendations. The results show that when the contract requires the provision of 49.999 million m3 water of Class I the quality, if the exchanged water quality provided is in Class II-V, the corresponding SW will be decreased to 48.699-37.399 million m3. The application of this research will be conducive to ensuring the fairness and durability of the water rights trading processes.


Subject(s)
Water Quality , Water Resources , Water , China
SELECTION OF CITATIONS
SEARCH DETAIL
...