Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 251: 126380, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32163781

ABSTRACT

A detailed mechanistic investigation of the hydroxyl radical (•OH) formation and organic pollutant degradation over transition metal-doped and undoped TiO2 photocatalysts was performed by the quantitative measurement of •OH and the identification of intermediate products under various experimental conditions. The Fe-doped TiO2 as a typical subject was prepared, characterized and used to degrade an azo dye Acid Orange 7 (AO7). It is indicated that the enhanced photocatalytic activity of Fe-doped TiO2 for AO7 degradation was attributed to the increase in surface area, the facilitated charge transfer via Fe-dopant, and a red shift of absorbable wavelength, maintaining a great formation of •OH under visible irradiation. The oxidation of H2O by holes was estimated as the major pathway of •OH formation rather than the reduction of dissolved O2 by electrons, and their formation trends reached to approximately 75% and 25%, respectively. Meanwhile the synergistic effect of Fe-dopant produced nearly 10% of extra •OH by visible light photoactivation. The intermediate products and pathways of AO7 degradation varied greatly with different photocatalysts and conditions of the process, involving several reaction mechanisms such as the azo bond cleaving, naphthalene oxidation, desulfonation, and hydroxylated products generation. Through the quantification of •OH-reacted efficiency we proposed, a stoichiometry of •OH affecting overall reaction mechanisms in the TiO2-assisted photodegradation of AO7 was further established. This study can provide new insights on how to better clarify the variation regularity of organic pollutant degradation from different treatments of the •OH-based advanced oxidation processes.


Subject(s)
Azo Compounds/chemistry , Benzenesulfonates/chemistry , Light , Photolysis , Catalysis , Hydroxyl Radical/chemistry , Oxidation-Reduction , Titanium/chemistry
2.
Chemosphere ; 182: 364-372, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28505578

ABSTRACT

This study suggested the amount of hydroxyl radicals (OH) reacting with organics as a new index to evaluate the reaction efficiency (RE) of Fenton process, and used it to investigate the degradation mechanism of target pollution, Acid Orange 7 (AO7). The effects of initial concentrations of Fe(II), H2O2, and AO7 on RE were quantified by using response surface methodology (RSM). The main factors affecting RE were Fe(II), H2O2, and their interaction, and their percentage effects were 65.75, 11.99 and 22.23%, respectively. Moreover, based on the analysis result of RSM, a condition for good RE was proposed that it should ensure a higher amount of OH reacted with organics, and reduce the amount of OH scavenged by Fe(II). Liquid chromatography-mass spectrometry (LC/MS) analysis was used to identify the products of AO7 degradation in Fenton process, and there were three possible mechanisms to be observed, such as azo bond cleavage, hydroxylation, and oxidation of naphthalene ring. The trend of mechanisms might vary with the amount of OH attacks, and therefore the use of estimated RE could provide more particular information to better understand the relationship between organic degradation and OH attacks.


Subject(s)
Azo Compounds/chemistry , Benzenesulfonates/chemistry , Hydrogen Peroxide/chemistry , Hydroxyl Radical , Chromatography, Liquid , Ferrous Compounds/chemistry , Hydroxyl Radical/chemistry , Iron/chemistry , Mass Spectrometry , Oxidation-Reduction
3.
J Hazard Mater ; 274: 420-7, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24806871

ABSTRACT

When hexavalent chromium (Cr(VI)) is added to a TiO2 photocatalytic reaction, the decolorization and mineralization efficiencies of azo dyes Acid Orange 7 (AO7) are enhanced even though the mechanism is unclear. This study used 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as the scavenger and the analysis of Electron Spin Resonance (ESR) to investigate this enhancement effect by observing the hydroxyl radical (OH) generation of the Cr(VI)/TiO2 system under UV and visible light (Vis) irradiation. With Cr(VI), the decolorization efficiencies were approximately 95% and 62% under UV and Vis, and those efficiencies were 25% less in the absence of Cr(VI). The phenomena of the DMPO-OH signals during the ESR analysis under Vis 405 and 550 nm irradiation were obviously the enhancement effects of Cr(VI) in aerobic conditions. In anoxic conditions, the catalytic effects of Cr(VI) could not be achieved due to the lack of a redox reaction between Cr(VI) and the adsorbed oxygen at the oxygen vacancy sites on the TiO2 surfaces. The results suggest that by introducing the agents of redox reactions such as chromate ions, we could lower the photoenergy of TiO2 needed and allow Vis irradiation to activate photocatalysis.


Subject(s)
Azo Compounds/chemistry , Benzenesulfonates/chemistry , Chromium/chemistry , Coloring Agents/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy , Hydroxyl Radical/chemistry , Light , Photolysis , Titanium/radiation effects , Water Purification
4.
J Air Waste Manag Assoc ; 64(1): 13-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24620399

ABSTRACT

UNLABELLED: This study investigated the indoor air quality (IAQ) conditions of carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), formaldehyde (HCHO), total volatile organic compounds (TVOCs), and bio-aerosols (bacteria and fungi) in a respiratory type of medical facility in Chia-Yi County in southern Taiwan. Among those IAQ conditions, the concentrations of CO, O3, and HCHO exceeded the regulation values of the Taiwan Environmental Protection Administration (EPA) mostly in the morning. The concentrations of bacteria and fungi did not exceed the regulation values but still posed potential health and environment problems for workers, patients, and visitors. Therefore, self-made silver-coated zeolite (AgZ) was used as a filter material in air cleaners to remove bio-aerosols in the respiratory care ward (RCW), and the removals were still effective after 120 hr. The cumulative bio-aerosol removals for bacteria and fungi were 900 and 1,088 colony-forming units (CFU) g(-1) after 24 hr and were above 3,100 and 2,700 CFU g(-1) after 120 hr. From the research results, it is suggested that AgZ filtering could be used as a feasible engineering measure for hospitals to control their bacteria and fungi parameters in IAQ management. Hospitals should maintain their environmental management and monitoring programs and use different engineering measures to improve different IAQ parameters. IMPLICATIONS: This study investigated the IAQ conditions in the field at a hospital in Chia-Yi County in southern Taiwan. Although concentrations of most parameters were still within the regulation values, the concentrations of CO, O3, and HCHO were partially exceeded. We propose a method using an air cleaner with silver-coated zeolite (AgZ) as a possible engineering measure, and there were effective reductions of bacteria and fungi to lower levels with antibacterial effects after 120 hr. Furthermore, this study implies that hospitals should continuously maintain environmental monitoring programs and adopt optimal engineering measures for different needs.


Subject(s)
Air Pollutants/chemistry , Air Pollution, Indoor/prevention & control , Hospitals , Zeolites/chemistry , Environmental Exposure , Environmental Monitoring/methods , Environmental Monitoring/standards , Humans , Inhalation Exposure , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...