Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 18(4): 2737-2748, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35244397

ABSTRACT

Three-dimensional atomic-level models of polymers are the starting points for physics-based simulation studies. A capability to generate reasonable initial structural models is highly desired for this purpose. We have developed a python toolkit, namely, polymer structure predictor (psp), to generate a hierarchy of polymer models, ranging from oligomers to infinite chains to crystals to amorphous models, using a simplified molecular-input line-entry system (SMILES) string of the polymer repeat unit as the primary input. This toolkit allows users to tune several parameters to manage the quality and scale of models and computational cost. The output structures and accompanying force field (GAFF2/OPLS-AA) parameter files can be used for downstream ab initio and molecular dynamics simulations. The psp package includes a Colab notebook where users can go through several examples, building their own models, visualizing them, and downloading them for later use. The psp toolkit, being a first of its kind, will facilitate automation in polymer property prediction and design.


Subject(s)
Molecular Dynamics Simulation , Polymers , Models, Structural , Polymers/chemistry
2.
J Am Chem Soc ; 141(46): 18455-18466, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31674178

ABSTRACT

Salt-doped diblock copolymers with microphase-separated domains of both an ion conductive and a mechanically strong polymer have been extensively studied due to their potential in transport applications. Several unusual or counterintuitive trends regarding their transport properties have been observed experimentally, such as increasing ion conduction as a function of molecular weight. A crucial feature of these systems is the strong solvation of ions in the conducting microphase due to its higher dielectric constant. Here, we perform molecular dynamics simulations using a coarse-grained model that includes a 1/r4 potential form to generically represent ion solvation, allowing us to reproduce experimentally observed trends and explore their molecular underpinnings. We find that increasing ion concentration can increase or decrease ion diffusion, depending on solvation strength. We also show that the trend of increasing diffusion with molecular weight becomes more dramatic as ions are solvated in one polymer block more strongly or as the ion-ion interactions get stronger. In contrast to expectations, the interfacial width or the overlap of ions with the nonconductive polymer block does not adequately explain this phenomenon; instead, local ion agglomeration best explains reduced diffusion. Interfacial sharpening, controlled by the Flory χ parameter and molecular weight, tends to allow ions to spread more uniformly, and this increases their diffusion.

3.
ACS Macro Lett ; 7(9): 1092-1098, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35632941

ABSTRACT

We study transport of penetrants through nanoscale morphologies motivated by common block copolymer morphologies, using confined random walks and coarse-grained simulations. Diffusion through randomly oriented grains is 1/3 for cylinder and 2/3 for lamellar morphologies versus an unconstrained (homopolymer) system, as previously understood. Diffusion in the double gyroid structure depends on the volume fraction and is 0.47-0.55 through the minority phase at 30-50 vol % and 0.73-0.80 through the majority at 50-70 vol %. Thus, among randomly oriented standard minority phase structures with no grain boundary effects, lamellae is preferable for transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...