Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(58): 7499-7502, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38946539

ABSTRACT

Designing electrocatalysts for seawater splitting remains challenging. A Ru-Co alloy supported by an N-doped carbon substrate catalyst has been designed using etching and a low-temperature treatment method. Studies show that the superior performance of this catalyst is related to the hollow-structured N-doped carbon frame and surface reconstruction of the Ru-Co alloy.

2.
Nano Lett ; 23(3): 1052-1060, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36706048

ABSTRACT

Efficient and stable electrocatalysts are critically needed for the development of practical overall seawater splitting. The nanocomposite of RuCoBO has been rationally engineered to be an electrocatalyst that fits these criteria. The study has shown that a calcinated RuCoBO-based nanocomposite (Ru2Co1BO-350) exhibits an extremely high catalytic activity for H2 and O2 production in alkaline seawater (overpotentials of 14 mV for H2 evolution and 219 mV for O2 evolution) as well as a record low cell voltage (1.466 V@10 mA cm-2) and long-term stability (230 h @50 mA cm-2 and @100 mA cm-2) for seawater splitting. The results show that surface reconstruction of Ru2Co1BO-350 occurs during hydrogen evolution reaction and oxygen evolution reaction, which leads to the high activity and stability of the catalyst. The reconstructed surface is highly resistant to Cl- corrosion. The investigation suggests that a new strategy exists for the design of high-performance Ru-based electrocatalysts that resist anodic corrosion during seawater splitting.

3.
Small ; 18(42): e2203778, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36103609

ABSTRACT

An electrocatalyst composed of RuO2 surrounded by interfacial carbon, is synthesized through controllable oxidization-calcination. This electrocatalyst provides efficient charge transfer, numerous active sites, and promising activity for pH-universal electrocatalytic overall seawater splitting. An electrolyzer with this catalyst gives current densities of 10 mA cm-2 at a record low cell voltage of 1.52 V, and shows excellent durability at current densities of 10 mA cm-2 for up to 100 h. Based on the results, a mechanism for the catalytic activity of the composite is proposed. Finally, a solar-driven system is assembled and used for overall seawater splitting, showing 95% Faraday efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...