Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biol Trace Elem Res ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789898

ABSTRACT

Polycystic ovary syndrome (PCOS) severely affects women's fertility and accompanies serious metabolic disturbances, affecting 5%-20% of women of reproductive age globally. We previously found that exposure to toxic metals in the blood raised the risk of PCOS, but the association between exposure to toxic metals and the risk of PCOS in the follicular fluid, the microenvironment for oocyte growth and development in females, and its effect on metabolism has not been reported. This study aimed to evaluate the associations between the concentrations of cadmium (Cd), mercury (Hg), barium (Ba) and arsenic (As) in FF and the risk of PCOS, and to explore the mediating effect of metabolic markers in FF on the above relationship. We conducted a case-control study, including 557 women with PCOS and 651 controls. Ba, Cd, Hg and As levels in FF were measured by ICP-MS, metabolites levels in FF was measured by LC-MS/MS among 168 participants randomly selected from all the participants. Logistic regression models were used to assess the association of a single metal level with the PCOS risk, and linear regression models were used to assess the relationships of a single metal level with clinical phenotype parameters and metabolites levels. Combined effect of metals mixture levels on the risk of PCOS were assessed via weighted quantile sum (WQS) regression and bayesian kernel machine regression (BKMR). Medication analysis was performed to explore the role of metabolic markers on the relationship of toxic metals levels with the risk of PCOS. The exposure levels of Cd, Hg, Ba and As in FF were all positively and significantly associated with the PCOS risk (with respect to the highest vs. lowest tertile group: OR = 1.57, 95% CI = 1.17 ~ 2.12 for Cd, OR = 1.69, 95% CI = 1.22 ~ 2.34 for Hg, OR = 1.76, 95% CI = 1.32 ~ 2.34 for Ba, OR = 1.42, 95% CI = 1.05 ~ 1.91 for As). In addition, levels of metal mixture also significantly correlated with the risk of PCOS, Cd level contributed most to it. Moreover, we observed significant positive relationships between Cd level and LH (ß = 0.048, 95% CI = 0.002 ~ 0.094), T (ß = 0.077, 95% CI = 0.029 ~ 0.125) and HOMA-IR value (ß = 0.060, 95% CI = 0.012 ~ 0.107), as well as Hg level with LH, FSH/LH ratio and TC. Furthermore, we revealed that estrone sulfate, LysoPE 22:6 and N-Undecanoylglycine were significantly and positively mediating the association between Cd level and the risk of PCOS (with mediated proportion of 0.39, 0.24 and 0.35, respectively), and between Hg level and the risk of PCOS (with mediated proportion of 0.29, 0.20 and 0.46, respectively). These highly expressed metabolites significantly enriched in the fatty acid oxidation, steroid hormone biosynthesis and glycerophospholipids metabolism, which may explain the reason why the levels of Cd and Hg in FF associated with the phenotype of PCOS. Ba and As in FF was not found the above phenomenon. Our results suggested that exposure to multiple toxic metals (Cd, Hg, Ba and As) in FF associated with the increased risk of PCOS, Cd was a major contributor. Levels of Cd and Hg in FF significantly associated with the phenotype of PCOS. The above association may result from that Cd and Hg in FF related with the disturbance of fatty acid oxidation, steroid hormone biosynthesis and the glycerophospholipids metabolism.

2.
Ecotoxicol Environ Saf ; 271: 115932, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232522

ABSTRACT

BACKGROUND: Endometriosis is a common gynecological disease that affects approximately 5 %∼10 % of reproductive-aged women. Zinc (Zn), selenium (Se), copper (Cu), cobalt (Co) and molybdenum (Mo) are essential trace elements and are very important for human health. However, studies on the relationship between mixtures of essential trace elements and the risk of endometriosis are limited and inconsistent. In particular, studies confirming the association via different sample types are limited. OBJECTIVE: This study aimed to investigate the associations between Zn, Se, Cu, Co and Mo concentrations in blood and follicular fluid (FF) and endometriosis risk in a Chinese population. METHODS: A total of 609 subjects undergoing in vitro fertilization (IVF) were recruited; 836 samples were analyzed, including 451 blood samples (234 controls and 217 cases) and 385 FF samples (203 controls and 182 cases). In addition, 227 subjects provided both blood and FF samples. Zn, Se, Cu, Co and Mo concentrations in blood and FF were quantified via inductively coupled plasma-mass spectrometry (ICP-MS). The associations between the levels of Zn, Se, Cu, Co and Mo and the risk of endometriosis were assessed using single-element models (logistic regression models), and the combined effect of the trace elements on endometriosis risk was assessed using multielement models (Bayesian kernel machine regression (BKMR) and weighted quantile sum (WQS) regression). RESULTS: Based on the single-element models, significant associations of Zn concentrations in blood (high-level vs. low-level group: aOR = 14.17, 95 % CI: 7.31, 27.50) and FF (first tertile vs. second tertile group: aOR = 0.34, 95 % CI: 0.16, 0.71; third tertile vs. second tertile group: aOR = 2.32, 95 % CI: 1.38, 3.91, respectively) and Co concentrations in blood (first tertile vs. second tertile group, aOR = 0.24, 95 % CI: 0.12, 0.48) and FF (third tertile vs. second tertile group: aOR = 3.87, 95 % CI: 2.19, 6.84) with endometriosis risk were found after adjustment for all confounders. In FF, Cu and Mo levels were significantly greater among the cases than among the controls, with a positive association with endometriosis risk (Cu (first tertile vs. second tertile group: aOR = 0.39, 95 % CI: 0.19, 0.81; third tertile vs. second tertile group: aOR = 2.73, 95 % CI: 1.61, 4.66, respectively) and Mo (high-level vs. low-level group: aOR = 14.93, 95 % CI: 7.16, 31.12)). However, similar associations between blood Cu and Mo levels and endometriosis risk were not found. In addition, the levels of these five essential trace element mixtures in blood and in FF were significantly and positively associated with endometriosis risk according to the BKMR analyses; the levels of Zn and Cu in blood and the levels of Mo in FF were significantly related to the risk of endometriosis, and the posterior inclusion probabilities (PIPs) were 1.00, 0.99 and 1.00 for Zn and Cu levels in blood and Mo levels in FF, respectively. Furthermore, Zn and Mo were the highest weighted elements in blood and FF, respectively, according to WQS analyses. CONCLUSION: The risk of endometriosis was associated with elevated levels of several essential trace elements (Zn, Cu and Co). Elevated levels of these elements may be involved in the pathomechanism of endometriosis. However, further studies with larger sample sizes will be necessary to confirm these associations.


Subject(s)
Endometriosis , Selenium , Trace Elements , Humans , Female , Adult , Trace Elements/analysis , Zinc , Cobalt , Endometriosis/epidemiology , Bayes Theorem , Molybdenum
3.
J Assist Reprod Genet ; 40(9): 2185-2196, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37439868

ABSTRACT

PURPOSE: Preimplantation genetic testing (PGT) has become a reliable tool for preventing the germline transmission of mitochondrial DNA (mtDNA) variants. However, procedures are not standardized across mtDNA variants. In this study, we aim to estimate symptomatic thresholds, risk, and chance of success for PGT for mtDNA pathogenic variant carriers. METHODS: We performed a systematic analysis of heteroplasmy data including 455 individuals from 187 familial pedigrees with the common m.3243A>G, m.8344A>G, or m.8993T>G pathogenic variants. We applied binary logistic regression for estimating symptomatic thresholds of heteroplasmy, simplified Sewell-Wright formula and Kimura equations for predicting the risk of disease transmission, and binomial distribution for predicting minimum oocyte numbers. RESULTS: We estimated the symptomatic thresholds of m.8993T>G and m.8344A>G as 29.86% and 16.15%, respectively. We could not determine a threshold for m.3243A>G. We established models for mothers harboring common and rare mtDNA pathogenic variants to predict the risk of disease transmission and the number of oocytes required to produce an embryo with sufficiently low variant load. In addition, we provide a table allowing the prediction of transmission risk and the minimum required oocytes for PGT patients with different variant levels. CONCLUSION: We have established models that can determine the symptomatic thresholds of common mtDNA pathogenic variants. We also constructed universal models applicable to nearly all mtDNA pathogenic variants which can predict risk and minimum numbers for PGT patients. These models have advanced our understanding of mtDNA disease pathogenesis and will enable more effective prevention of disease transmission using PGT.


Subject(s)
DNA, Mitochondrial , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/analysis , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Mitochondria/genetics , Germ Cells , Genetic Testing
4.
J Assist Reprod Genet ; 40(9): 2197-2209, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37462790

ABSTRACT

PURPOSE: Although a variety of analytical methods have been developed to detect mitochondrial DNA (mtDNA) heteroplasmy, there are special requirements of mtDNA heteroplasmy quantification for women carrying mtDNA mutations receiving the preimplantation genetic diagnosis (PGD) and prenatal diagnosis (PD) in clinic. These special requirements include various sample types, large sample number, long-term follow-up, and the need for detection of single-cell from biopsied embryos. Therefore, developing an economical, accurate, high-sensitive, and single-cell analytical method for mtDNA heteroplasmy is necessary. METHODS: In this study, we developed the Sanger sequencing combined droplet digital polymerase chain reaction (ddPCR) method for mtDNA quantification and compared the results to next-generation sequencing (NGS). A total of seventeen families with twelve mtDNA mutations were recruited in this study. RESULTS: The results showed that both Sanger sequencing and ddPCR could be used to analyze the mtDNA heteroplasmy in single-cell samples. There was no statistically significant difference in heteroplasmy levels in common samples with high heteroplasmy (≥ 5%), low heteroplasmy (< 5%), and single-cell samples, either between Sanger sequencing and NGS methods, or between ddPCR and NGS methods (P > 0.05). However, Sanger sequencing was unable to detect extremely low heteroplasmy accurately. But even in samples with extremely low heteroplasmy (0.40% and 0.92%), ddPCR was always able to quantify them. Compared to NGS, Sanger sequencing combined ddPCR analytical methods greatly reduced the cost of sequencing. CONCLUSIONS: In conclusion, this study successfully established an economical, accurate, sensitive, single-cell analytical method based on the Sanger sequencing combined ddPCR methods for mtDNA heteroplasmy quantification in a clinical setting.


Subject(s)
DNA, Mitochondrial , Preimplantation Diagnosis , Female , Humans , Pregnancy , DNA, Mitochondrial/genetics , Mitochondria/genetics , Mutation/genetics , Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
5.
Adv Sci (Weinh) ; 10(23): e2302023, 2023 08.
Article in English | MEDLINE | ID: mdl-37311196

ABSTRACT

Ovarian reserve (OR) and fertility are critical in women's healthcare. Clinical methods for encoding OR and fertility rely on the combination of tests, which cannot serve as a multi-functional platform with limited information from specific biofluids. Herein, metabolic fingerprinting of follicular fluid (MFFF) from follicles is performed, using particle-assisted laser desorption/ionization mass spectrometry (PALDI-MS) to encode OR and fertility. PALDI-MS allows efficient MFFF, showing fast speed (≈30 s), high sensitivity (≈60 fmol), and desirable reproducibility (coefficients of variation <15%). Further, machine learning of MFFF is applied to diagnose diminished OR (area under the curve of 0.929) and identify high-quality oocytes/embryos (p < 0.05) by a single PALDI-MS test. Meanwhile, metabolic biomarkers from MFFF are identified, which also determine oocyte/embryo quality (p < 0.05) from the sampling follicles toward fertility prediction in clinics. This approach offers a powerful platform in women's healthcare, not limited to OR and fertility.


Subject(s)
Follicular Fluid , Ovarian Reserve , Female , Animals , Follicular Fluid/chemistry , Follicular Fluid/metabolism , Reproducibility of Results , Oocytes/metabolism , Fertility
6.
Biol Trace Elem Res ; 201(5): 2151-2161, 2023 May.
Article in English | MEDLINE | ID: mdl-35725996

ABSTRACT

Endometrial diseases, including uterine fibroids, polyps, intrauterine adhesion, endometritis, etc., are the major causes of infertility among women. However, the association between essential trace element status in women and the risk of endometrial disease is limited and unclear. This study aimed to investigate this association using a case-control study design; a total of 302 women patients with endometrial diseases and 302 healthy women were included. Compared to women in the control group, serum selenium (Se) (p = 0.024) and zinc (Zn) (p = 0.017) levels were significantly lower, while copper (Cu) (p = 0.004) and molybdenum (Mo) (p = 0.005) levels were significantly higher among women with endometrial diseases. In addition, compared to women in the first quartile of the copper/zinc (Cu/Zn) ratio value group, the adjusted ORs (95% CIs) of endometrial diseases were 1.50 (1.05, 2.14), 1.68 (1.18, 2.39), and 1.47 (1.02, 2.10), respectively, in the second, third, and fourth quartile of the Cu/Zn ratio value group (p trend = 0.047). In addition, the results from restricted cubic splines showed that the dose-response relationships of serum levels of these essential elements with the risk of endometrial diseases were nonlinear for Se, Cu, and Zn and relatively linear for Mo and Cu/Zn ratio. The present study showed serum levels of Zn and Se among women with endometrial diseases were significantly lower compared to that among healthy women, while serum levels of Cu and Mo were significantly higher, in addition, the serum Cu/Zn ratio value was also significantly and positively associated with the risk of endometrial diseases.


Subject(s)
Selenium , Trace Elements , Uterine Diseases , Humans , Female , Copper , Case-Control Studies , Zinc
7.
Sci Total Environ ; 855: 158882, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36155031

ABSTRACT

BACKGROUND: Endometriosis affects up to 10 % of women of reproductive age and can lead to infertility. Research investigating whether combined exposure to arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) is related to an increased risk of endometriosis, especially using different biological samples to validate the association, is very limited. OBJECTIVE: This investigation aimed to evaluate the associations between the concentrations of As, Cd, Pb and Hg in blood and follicular fluid and the risk of endometriosis. METHODS: A total of 609 endometriosis cases and controls seen at the reproductive center of the First Affiliated Hospital of Anhui Medical University in Hefei, China, between April 2020 and December 2021 were included in our study. Blood (217 cases and 234 controls) and follicular fluid (182 cases and 203 controls) samples were collected from these subjects. The concentrations of Cd, Hg, As and Pb in the blood and follicular fluid were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Unconditional logistic regression models were used to assess the associations between Cd, Hg, As or Pb levels and the risk of endometriosis; Bayesian kernel machine regression (BKMR) was used to evaluate the combined effect of metals on the risk of endometriosis. RESULTS: We found significant associations between blood concentrations of As (highest vs. lowest tertile: aOR = 5.53, 95 % CI: 2.97, 10.30), Cd (second vs. lowest tertile: aOR = 1.96, 95 % CI: 1.07, 3.58; highest vs. lowest tertile: aOR = 3.21, 95 % CI: 1.79, 5.77), Pb (highest vs. lowest tertile: aOR = 2.73, 95 % CI: 1.56, 4.78) and Hg (high-level group vs. low-level group: aOR = 13.10, 95 % CI: 6.74, 25.44; second vs. lowest tertile: aOR = 15.27, 95 % CI: 4.96, 46.97; highest vs. lowest tertile: aOR = 35.66, 95 % CI: 11.99, 106.08) and increased risk of endometriosis adjusting for confounders. Follicular fluid As (highest vs. lowest tertile: aOR = 2.42, 95 % CI: 1.35, 4.33), Hg (highest vs. lowest tertile: aOR = 1.86, 95 % CI: 1.05, 3.29), Cd (second vs. lowest tertile: aOR = 2.45, 95 % CI: 1.29, 4.65; highest vs. lowest tertile: aOR = 3.12, 95 % CI: 1.67, 5.83), and Pb (second vs. lowest tertile: aOR = 1.97, 95 % CI: 1.11, 3.52) concentrations were positively associated with endometriosis risk. The BKMR analyses showed linear associations between the metal mixtures and the risk of endometriosis. Both in blood and in follicular fluid, As exhibited the highest contribution. CONCLUSION: The data from this study suggest that toxic metals, individually and as a mixture, play a role in the risk of endometriosis, thus providing a novel idea for endometriosis prevention.


Subject(s)
Arsenic , Endometriosis , Mercury , Metals, Heavy , Humans , Female , Follicular Fluid , Cadmium , Endometriosis/chemically induced , Endometriosis/epidemiology , Bayes Theorem , Lead , Heavy Metal Poisoning
8.
Front Endocrinol (Lausanne) ; 13: 906849, 2022.
Article in English | MEDLINE | ID: mdl-36387879

ABSTRACT

Background: Early embryonic arrest (EEA) leads to repeated cessation of fresh cycles among infertile women undergoing in vitro fertilization (IVF). Whether the levels of some essential trace elements [copper (Cu), zinc (Zn), selenium (Se) and cobalt (Co)] in the bodies of women are related to the risk of EEA warrants study. Objective: Our study aimed to investigate the associations of peripheral blood levels of Cu, Zn, Se, and Co and their mixtures with the risk of EEA. Methods: A total of 74 EEA cases (123 IVF cycles) and 157 controls (180 IVF cycles) from the reproductive center of the First Affiliated Hospital of Anhui Medical University in Hefei, China, between June 2017 and March 2020 were included in our study. Demographic and clinical data were collected from electronic medical records. Cu, Zn, Se, and Co levels were measured in blood samples collected on the day of oocyte retrieval when infertile women entered clinical treatment for the first time using an inductively coupled plasma mass spectrometer (ICP-MS). Generalized estimating equation (GEE) models were used to evaluate the associations of four essential trace element concentrations individually with the risk of EEA, and Bayesian kernel machine regression (BKMR) was used to explore the associations between four essential trace element mixtures and the risk of EEA. Results: Se concentrations of infertile women were significantly lower in the case group compared with the control group. Co levels were significantly higher in the case group compared with the control group. The differences in Cu and Zn concentrations between the two groups were not significant. Based on single-metal models, Co was positively associated with the risk of EEA before and after adjustment for all confounders (odd ratio (OR) = 1.72, 95% confidence interval (CI): 1.18-2.52; OR = 2.27, 95% CI: 1.37-3.77, respectively), and Se was negatively associated with the risk of EEA before adjustment for all confounders (OR = 0.18, 95% CI: 0.07-0.51). BKMR analyses showed that Se was significantly and negatively associated with the risk of EEA when all the other three metals (Cu, Zn, and Co) were fixed at the 25th, 50th, or 75th percentiles, whereas Zn displayed a significant and positive association with the risk of EEA when all the other three metals (Cu, Se and Co) were fixed at the 25th, 50th, or 75th percentiles. Co did not show any effect on the risk of EEA when all the other metals (Cu, Zn, and Se) were fixed at the 25th, 50th, or 75th percentiles. In addition, an increasing trend of the joint effect of four essential trace elements on the risk of EEA was found, although it was not statistically significant. Conclusion: The levels of essential trace elements (Cu, Zn, Se, and Co) might correlate with the risk of EEA to some extent. The present study might provide a real-world perspective on the relationship between essential trace elements and the risk of EEA when considering them as a single element or as mixtures.


Subject(s)
Infertility, Female , Selenium , Trace Elements , Humans , Female , Zinc , Copper , Cobalt , Bayes Theorem , Reproductive Techniques, Assisted
9.
Sci Total Environ ; 849: 157780, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35926607

ABSTRACT

BACKGROUND: Polycystic ovarian syndrome (PCOS) affects 5 % ~ 20 % of women of reproductive age and is a serious health problem. Whether exposure to lead (Pb), mercury (Hg), arsenic (As), barium (Ba) or (cadmium) Cd is associated with an increased risk of PCOS, particularly their joint effect as well as their association with the clinical phenotype of PCOS is limited and unclear. OBJECTIVES: We aimed to explore the associations of the blood Pb, Hg, As, Ba and Cd levels and risk of PCOS in Chinese women of reproductive age. METHODS: A case-control study was used and included 369 women with PCOS and 441 controls. The levels of Pb, Hg, As, Ba and Cd were measured in fasting blood samples collected on the 2nd or 3rd day of menstruation or vaginal bleeding after drug withdrawal; basal sex hormone levels, fasting glucose and fasting insulin were measured simultaneously. Unconditional logistic regression models were used to assess the relationship of the blood Pb, Hg, As, Ba or Cd levels with PCOS risk. Bayesian kernel machine regression (BKMR) was used to assess the joint effect of Pb, Hg, As, Ba and Cd on PCOS risk and estimate which metal or metals contributed most to the association. Multiple linear regression models were used to investigate the relationships between the levels of selected metals and parameters of the clinical PCOS phenotype. RESULTS: The mean ± SD ages of women in the case and control groups were 28.80 ± 3.39 and 28.97 ± 2.39 years, respectively; their mean ± SD BMIs were 23.86 ± 3.51 kg/m2 and 22.08 ± 3.14 kg/m2, respectively. The blood levels of three metals (Pb, As and Ba) were statistically associated with PCOS risk based on single-metal models. With each natural logarithm transformed (ln) unit increase in blood concentrations of Pb, higher likelihood of PCOS can be found, the adjusted odd ratio (aOR) and 95 % confidence interval (CI) was 1.83 (1.35-2.48), and these for As and Ba were 2.49 (1.86-3.33) and 1.20 (1.04-1.39), respectively. Compared with women at the first tertile group, higher likelihoods of PCOS among women in the second and third tertiles of the Pb group were observed, aORs and 95 % CIs were 1.81 (1.22-2.68) and 2.08 (1.42-3.04), respectively; and higher likelihoods of PCOS among women in the third tertiles of As and Ba group were also observed, the aORs and 95%CIs were 2.83 (1.93-4.15) and 1.89 (1.32-2.72), respectively. BKMR analysis also showed a statistically significant and positive joint effect of five metals on PCOS risk when the blood levels of five metals were all above the 55th percentile compared with their median levels, and As (100 %) and Pb (67.44 %) were the major contributors to the association. The blood As levels were positively associated with the luteinizing hormone (LH) levels and LH/FSH (follicle-stimulating hormone) ratio values, the blood Ba levels were negatively associated with the FSH levels, and the blood Pb levels were positively associated with the fasting insulin levels and homeostasis model assessment of insulin resistance (HOMA-IR) values. CONCLUSIONS: Our results suggest a positive association between exposure to multiple toxic metals (Pb, Hg, As, Ba and Cd) and PCOS risk. As and Pb were the major contributors, evaluated either as a single agent or metal mixture; and Pb, As, and Ba were associated with different parameters of the clinical PCOS phenotype. Additional studies are warranted to confirm these associations, particularly regarding the synergistic effect of toxic metals.


Subject(s)
Arsenic , Mercury , Polycystic Ovary Syndrome , Barium , Bayes Theorem , Cadmium , Case-Control Studies , Female , Follicle Stimulating Hormone , Glucose , Humans , Insulin , Lead , Luteinizing Hormone , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/epidemiology
10.
Stem Cell Res ; 63: 102858, 2022 08.
Article in English | MEDLINE | ID: mdl-35905669

ABSTRACT

Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease that usually leads to selective degeneration of retinal ganglion cells (RGCs) and optic atrophy in young adults. One of three common mitochondrial DNA (mtDNA) mutations (m.11778G > A, m.3460G > A, m.14484 T > C) account for 90% of LHON cases. All three affect the function of respiration chain complex I. However, m.3635G > A, affecting the structure and function of MT-ND1 gene, is also associated with LHON. Here, we successfully generated a human induced pluripotent stem cell (hiPSC) line from an LHON patient carrying a homoplasmic m.3635G > A mutation in the MT-ND1 gene.


Subject(s)
Induced Pluripotent Stem Cells , Optic Atrophy, Hereditary, Leber , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mitochondria/metabolism , Mutation/genetics , Optic Atrophy, Hereditary, Leber/genetics , Young Adult
11.
Environ Sci Pollut Res Int ; 29(41): 62648-62661, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35411517

ABSTRACT

Early embryonic arrest (EEA) leads to cancelation of fresh cycles among infertile women undergoing in vitro fertilization (IVF), bringing a great challenge for IVF. Whether exposure to thallium (Tl) is associated with an increased risk of EEA, especially its interaction with polymorphisms of mitochondria DNA (mtDNA) gene, is worthy of study. A case-control design was performed, including 74 EEA cases with 123 IVF cycles and 157 age and BMI-matched controls with 180 IVF cycles. Levels of Tl and other toxic metals (lead (Pb), (mercury) Hg, and (arsenci) As) were assessed by measuring them in blood samples collected on the day of oocyte retrieval; PCR amplification and sequencing were performed to screen the polymorphic sites of mtDNA gene in D-loop region. Bayesian kernel machine regression (BKMR) was used to confirm that Tl played a leading role in the situation of combined exposure; generalized estimating equation (GEE) models were used to evaluate the associations of Tl concentrations, polymorphisms of mtDNA gene, and their interactions with the risk of EEA. The impact of Tl exposure or polymorphisms of mtDNA gene on the oogenesis and embryonic development was also evaluated. BKMR analysis revealed that PIP (posterior inclusion probability) value of T1 was 0.9096, indicating that it played a leading role in the situation of combined exposure. Compared to the first quartile of Tl, the adjusted ORs (95% CIs) of EEA risk were 0.66 (0.26, 1.70), 1.18 (0.52, 2.64), and 4.53 (2.11, 9.69) for the second, third, and fourth quartile, respectively (p trend < 0.001). Compared to the wild type of mtDNA 16,519 gene (T 16,519 T), the adjusted OR (95% CI) of EEA risk for the variant type (T 16,519 C) was 3.11 (1.70, 5.72), and the variant types of the other sites with a minor allele frequency > 10% were not significantly related with the risk of EEA after FDR (False Discovery Rate) correction. With respect to interaction, compared to women at low Tl exposure level & wild type of mtDNA 16,519 gene group, the adjusted OR (95% CI) of EEA risk for women at high Tl exposure level & variant type of mtDNA 16,519 gene group was 9.28 (3.33, 25.81). Additionally, Tl exposure and polymorphisms of mtDNA 16,519 gene are inversely associated with the outcomes of oogenesis and embryonic development significantly. Our study indicated that high Tl exposure level was associated with the increased risk of EEA and Tl played a leading role in the situation of combined exposure; the strength of association was much higher when Tl exposure interacted with polymorphism of 16,519 mtDNA gene. These relationships might originate from the impact of Tl exposure or polymorphism of 16,519 mtDNA gene on the oogenesis and early embryonic development in vitro. Infertile women should keep high vigilant against Tl exposure especially those with variant type of mtDNA 16,519 gene.


Subject(s)
Infertility, Female , Thallium , Bayes Theorem , DNA, Mitochondrial , Female , Fertilization in Vitro , Humans , Mitochondria , Pregnancy , Thallium/toxicity
12.
Ecotoxicol Environ Saf ; 233: 113309, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35183814

ABSTRACT

BACKGROUND: Toxic and essential trace elements are reported to have impact on female fertility. However, studies on the potential synergistic or antagonistic effects of metal mixtures on IVF outcomes remain limited. OBJECTIVE: To evaluate whether serum concentrations of metals, individually and as mixtures, are associated with pregnancy outcomes in women undergoing IVF. METHODS: In a prospective birth cohort study about IVF from the First Affiliated Hospital of Anhui Medical University (n = 1184), we measured the concentrations of serum metals by ICP-MS according to a previously established method. Oocyte/embryo development indicators and follow-up results were also collected. The individual and joint effects of metals were estimated using logistic regressions and Bayesian kernel machine regressions (BKMR). RESULTS: At embryonic stage, we found negative associations between the serum lead (Pb) (ß = -0.14, 95%CI: -0.32, -0.04) and cadmium (Cd) (ß = -0.24, 95%CI: -0.39, -0.09) concentrations and the high-quality embryos rate; and positive associations between the serum cobalt (Co) (ß = 0.18, 95%CI: 0.05, 0.31) and selenium (Se) (ß = 0.17, 95%CI: 0.06, 0.41) concentrations and the MII rate. Regarding to the pregnancy outcomes, the serum Pb was negatively related with successful implantation (OR=0.85, 95%CI: 0.77, 0.94) and clinical pregnancy (OR=0.95, 95%CI: 0.91, 0.99); and positively associated with spontaneous abortion (OR=1.39, 95% CI: 1.02, 1.91). The BKMR analysis showed linear or parabolic associations between the metal mixtures and pregnancy outcomes, with Pb showing the highest posterior inclusion probabilities. CONCLUSIONS: The toxic (Pb, Cd) and essential (Co, Se) metals could be incorporated as simultaneous predictors of IVF outcomes including potential antagonistic effects, in which Pb exhibits major contributions.


Subject(s)
Fertilization in Vitro , Metals, Heavy/blood , Pregnancy Outcome , Bayes Theorem , Cohort Studies , Female , Humans , Pregnancy , Pregnancy Outcome/epidemiology , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...