Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139580

ABSTRACT

In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character "" (phonetically represented as "Wang") and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.8 × 7 × 1 mm3 (47.6 mm3). The proposed antenna element has a -10 dB impedance bandwidth of 1.7 GHz (from 3.3 GHz to 5 GHz) that can cover 5G New Radio (NR) sub-6 GHz bands N77 (3.3-4.2 GHz), N78 (3.3-3.8 GHz), and N79 (4.4-5 GHz). The evolution design, the current distribution, the effects of single-handed holding, and the analysis of the parameters are deduced to study the approach used to design the featured antenna. The measured total efficiencies are from 40% to 80%, the isolation is better than 12 dB, the calculated envelope correlation coefficient (ECC) is less than 0.12, and the calculated channel capacity (CC) ranges from 35 to 38 bps/Hz. The presented antenna array is a good alternative to 5G mobile handsets with wideband operation, a metal frame, and minimized spacing.

2.
Micromachines (Basel) ; 14(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36677155

ABSTRACT

A two-port multiple-input and multiple-output (MIMO) antenna with dual-band characteristics operating at the fifth-generation (5G) new radio (NR) sub-6 GHz n7/n38/n41/n79 bands is proposed. The proposed MIMO antenna is composed of two symmetric antenna elements and a defected ground plane. The antenna element consists of an incomplete circular patch with two L-shaped branches. By applying the defected ground structure and the slotted stub, the current distribution on the ground plane is changed to reduce the mutual coupling between the antenna elements. The measured -10 dB reflection coefficients cover 2.34-2.71 GHz and 3.72-5.10 GHz, while the measured isolation is larger than 20 dB at the whole operating frequency band. The paper has investigated different performance parameters in terms of the envelope correction coefficient (ECC), diversity gain (DG), radiation patterns, antenna gain, and efficiency. The proposed MIMO antenna is suitable for 5G applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...