Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Microorganisms ; 12(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792814

ABSTRACT

Pseudomonas aeruginosa is an opportunistic pathogen that usually causes chronic infections and even death in patients. The treatment of P. aeruginosa infection has become more challenging due to the prevalence of antibiotic resistance and the slow pace of new antibiotic development. Therefore, it is essential to explore non-antibiotic methods. A new strategy involves screening for drugs that target the quorum-sensing (QS) system. The QS system regulates the infection and drug resistance in P. aeruginosa. In this study, veratryl alcohol (VA) was found as an effective QS inhibitor (QSI). It effectively suppressed the expression of QS-related genes and the subsequent production of virulence factors under the control of QS including elastase, protease, pyocyanin and rhamnolipid at sub-inhibitory concentrations. In addition, motility activity and biofilm formation, which were correlated with the infection of P. aeruginosa, were also suppressed by VA. In vivo experiments demonstrated that VA could weaken the pathogenicity of P. aeruginosa in Chinese cabbage, Drosophila melanogaster, and Caenorhabditis elegans infection models. Molecular docking, combined with QS quintuple mutant infection analysis, identified that the mechanism of VA could target the LasR protein of the las system mainly. Moreover, VA increased the susceptibility of P. aeruginosa to conventional antibiotics of tobramycin, kanamycin and gentamicin. The results firstly demonstrate that VA is a promising QSI to treat infections caused by P. aeruginosa.

2.
J Hazard Mater ; 473: 134635, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38772110

ABSTRACT

How to address public health priorities after COVID-19 is becoming a critical task. To this end, we conducted wastewater surveillance for six leading pathogens, namely, SARS-CoV-2, norovirus, rotavirus, influenza A virus (IAV), enteroviruses and respiratory syncytial virus (RSV), in Nanchang city from January to April 2023. Metaviromic sequencing was conducted at the 1st, 4th, 7th, 9th, 12th and 14th weeks to reveal the dynamics of viral pathogens that were not covered by qPCR. Amplicon sequencing of the conserved region of norovirus GI and GII and the rotavirus and region encoding nonstructural protein of RSV was also conducted weekly. The results showed that after a rapid decrease in SARS-CoV-2 sewage concentrations occurred in January 2023, surges of norovirus, rotavirus, IAV and RSV started at the 6th, 7th, 8th and 11th weeks, respectively. The dynamics of the sewage concentrations of norovirus, rotavirus, IAV and RSV were consistent with the off-season resurgence of the above infectious diseases. Notably, peak sewage concentrations of norovirus GI, GII, rotavirus, IAV and RSV were found at the 6th, 3rd, 7th, 7th and 8th weeks, respectively. Astroviruses also resurge after the 7th week, as revealed by metaviromic data, suggesting that wastewater surveillance together with metaviromic data provides an essential early warning tool for revealing patterns of infectious disease resurgence.


Subject(s)
COVID-19 , Wastewater , Humans , Wastewater/virology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , China/epidemiology , Norovirus/genetics , Norovirus/isolation & purification , Sewage/virology , Rotavirus/genetics , Rotavirus/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Disease Outbreaks , Wastewater-Based Epidemiological Monitoring
3.
J Appl Microbiol ; 135(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38130237

ABSTRACT

AIMS: Despite metatranscriptomics becoming an emerging tool for pathogen surveillance, very little is known about the feasibility of this approach for understanding the fate of human-derived pathogens in drinking water sources. METHODS AND RESULTS: We conducted multiplexed microfluidic cards and metatranscriptomic sequencing of the drinking water source in a border city of North Korea in four seasons. Microfluidic card detected norovirus, hepatitis B virus (HBV), enterovirus, and Vibrio cholerae in the water. Phylogenetic analyses showed that environmental-derived sequences from norovirus GII.17, genotype C of HBV, and coxsackievirus A6 (CA6) were genetically related to the local clinical isolates. Meanwhile, metatranscriptomic assembly suggested that several bacterial pathogens, including Acinetobacter johnsonii and V. cholerae might be prevalent in the studied region. Metatranscriptomic analysis recovered 349 species-level groups with substantial viral diversity without detection of norovirus, HBV, and CA6. Seasonally distinct virus communities were also found. Specifically, 126, 73, 126, and 457 types of viruses were identified in spring, summer, autumn, and winter, respectively. The viromes were dominated by the Pisuviricota phylum, including members from Marnaviridae, Dicistroviridae, Luteoviridae, Potyviridae, Picornaviridae, Astroviridae, and Picobirnaviridae families. Further phylogenetic analyses of RNA (Ribonucleic Acid)-dependent RNA polymerase (RdRp) sequences showed a diverse set of picorna-like viruses associated with shellfish, of which several novel picorna-like viruses were also identified. Additionally, potential animal pathogens, including infectious bronchitis virus, Bat dicibavirus, Bat nodavirus, Bat picornavirus 2, infectious bursal disease virus, and Macrobrachium rosenbergii nodavirus were also identified. CONCLUSIONS: Our data illustrate the divergence between microfluidic cards and metatranscriptomics, highlighting that the combination of both methods facilitates the source tracking of human viruses in challenging settings without sufficient clinical surveillance.


Subject(s)
Chiroptera , Drinking Water , Norovirus , Picornaviridae , RNA Viruses , Viruses , Animals , Humans , Seasons , Chiroptera/genetics , Phylogeny , Microfluidics , RNA Viruses/genetics , Norovirus/genetics , RNA , RNA, Viral/genetics
4.
Water Res ; 247: 120751, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37918201

ABSTRACT

Wastewater-based epidemiology (WBE) is a promising tool for monitoring the spread of SARS-CoV-2 and other pathogens, providing a novel public health strategy to combat disease. In this study, we first analysed nationwide reports of infectious diseases and selected Salmonella, norovirus, and influenza A virus (IAV) as prioritized targets apart from SARS-CoV-2 for wastewater surveillance. Next, the decay rates of Salmonella, norovirus, and IAV in wastewater at various temperatures were established to obtain corrected pathogen concentrations in sewage. We then monitored the concentrations of these pathogens in wastewater treatment plant (WWTP) influents in three cities, establishing a prediction model to estimate the number of infected individuals based on the mass balance between total viral load in sewage and individual viral shedding. From October 2022 to March 2023, we conducted multipathogen wastewater surveillance (MPWS) in a WWTP serving one million people in Xi'an City, monitoring the concentration dynamics of SARS-CoV-2, Salmonella, norovirus, and IAV in sewage. The infection peaks of each pathogen were different, with Salmonella cases and sewage concentration declining from October to December 2022 and only occasionally detected thereafter. The SARS-CoV-2 concentration rapidly increased from December 5th, peaked on December 26th, and then quickly decreased until the end of the study. Norovirus and IAV were detected in wastewater from January to March 2023, peaking in February and March, respectively. We used the prediction models to estimate the rate of SARS-CoV-2 infection in Xi'an city, with nearly 90 % of the population infected in urban regions. There was no significant difference between the predicted and actual number of hospital admissions for IAV. We also accurately predicted the number of norovirus cases relative to the reported cases. Our findings highlight the importance of wastewater surveillance in addressing public health priorities, underscoring the need for a novel workflow that links the prediction results of populations with public health interventions and allocation of medical resources at the community level. This approach would prevent medical resource panic squeezes, reduce the severity and mortality of patients, and enhance overall public health outcomes.


Subject(s)
COVID-19 , Norovirus , Humans , Public Health , Wastewater , Wastewater-Based Epidemiological Monitoring , COVID-19/epidemiology , Proof of Concept Study , Health Priorities , Sewage , SARS-CoV-2 , Disease Outbreaks , China/epidemiology , RNA, Viral
5.
J Environ Manage ; 345: 118737, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37657296

ABSTRACT

Assessing the presence of waterborne pathogens and antibiotic resistance genes (ARGs) is crucial for managing the environmental quality of drinking water sources. However, detecting low abundance pathogens in such settings is challenging. In this study, a workflow was developed to enrich for broad spectrum pathogens from drinking water samples. A mock community was used to evaluate the effectiveness of various enrichment broths in detecting low-abundance pathogens. Monthly metagenomic surveillance was conducted in a drinking water source from May to September 2021, and water samples were subjected to five enrichment procedures for 6 h to recover the majority of waterborne bacterial pathogens. Oxford Nanopore Technology (ONT) was used for metagenomic sequencing of enriched samples to obtain high-quality pathogen genomes. The results showed that selective enrichment significantly increased the proportions of targeted bacterial pathogens. Compared to direct metagenomic sequencing of untreated water samples, targeted enrichment followed by ONT sequencing significantly improved the detection of waterborne pathogens and the quality of metagenome-assembled genomes (MAGs). Eighty-six high-quality MAGs, including 70 pathogen MAGs, were obtained from ONT sequencing, while only 12 MAGs representing 10 species were obtained from direct metagenomic sequencing of untreated water samples. In addition, ONT sequencing improved the recovery of mobile genetic elements and the accuracy of phylogenetic analysis. This study highlights the urgent need for efficient methodologies to detect and manage microbial risks in drinking water sources. The developed workflow provides a cost-effective approach for environmental management of drinking water sources with microbial risks. The study also uncovered pathogens that were not detected by traditional methods, thereby advancing microbial risk management of drinking water sources.


Subject(s)
Drinking Water , Metagenome , Phylogeny , Anti-Bacterial Agents , Risk Management
6.
Virol Sin ; 38(4): 568-584, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37355006

ABSTRACT

Hantaan virus (HTNV), the prototype virus of hantavirus, could escape innate immunity by restraining type I interferon (IFN) responses. It is largely unknown whether there existed other efficient anti-hantaviral tactics in host cells. Here, we demonstrate that the stimulator of interferon genes (STING) strengthens the host IFN-independent anti-hantaviral immunity. HTNV infection activates RIG-I through IRE1-XBP 1-mediated ER stress, which further facilitates the subcellular translocation and activation of STING. During this process, STING triggers cellular autophagy by interacting with Rab7A, thus restricting viral replication. To note, the anti-hantaviral effects of STING are independent of canonical IFN signaling. Additionally, neither application of the pharmacological antagonist nor the agonist targeting STING could improve the outcomes of nude mice post HTNV challenge in vivo. However, the administration of plasmids exogenously expressing the mutant C-terminal tail (ΔCTT) STING, which would not trigger the type I IFN responses, protected the nude mice from lethal HTNV infection. In summary, our research revealed a novel antiviral pathway through the RIG-I-STING-autophagy pathway, which offered novel therapeutic strategies against hantavirus infection.


Subject(s)
Hantaan virus , Hantavirus Infections , Interferon Type I , Orthohantavirus , Animals , Mice , Hantaan virus/metabolism , Immunity, Innate , Interferon Type I/metabolism , Interferon-beta/metabolism , Mice, Nude
7.
Infect Drug Resist ; 16: 1941-1953, 2023.
Article in English | MEDLINE | ID: mdl-37025193

ABSTRACT

Since bacteriophages (phages) were firstly reported at the beginning of the 20th century, the study on them experiences booming-fading-emerging with discovery and overuse of antibiotics. Although they are the hotspots for therapy of antibiotic-resistant strains nowadays, natural phage applications encounter some challenges such as limited host range and bacterial resistance to phages. Synthetic biology, one of the most dramatic directions in the recent 20-years study of microbiology, has generated numerous methods and tools and has contributed a lot to understanding phage evolution, engineering modification, and controlling phage-bacteria interactions. In order to better modify and apply phages by using synthetic biology techniques in the future, in this review, we comprehensively introduce various strategies on engineering or modification of phage genome and rebooting of recombinant phages, summarize the recent researches and potential directions of phage synthetic biology, and outline the current application of engineered phages in practice.

8.
Imeta ; 2(1): e77, 2023 Feb.
Article in English | MEDLINE | ID: mdl-38868349

ABSTRACT

A workflow that combined metagenomic sequencing with flow cytometry was developed. The absolute abundance of pathogens was accurately estimated in mock communities and real samples. Metagenome-assembled genomes binned from metagenomic data set is robust in phylogenetic analysis and virulence profiling.

9.
Front Microbiol ; 13: 1042214, 2022.
Article in English | MEDLINE | ID: mdl-36406453

ABSTRACT

Pseudomonas aeruginosa is an important opportunistic pathogen, and the emergence of drug resistance greatly increased the difficulty of treating its infection. Cell density-dependent quorum sensing (QS) system not only regulates the virulence but also associates with the drug resistance of P. aeruginosa. Screening for agents targeting QS to inhibit bacterial virulence and pathogenicity is considered a promising strategy to combat P. aeruginosa infection. In the present study, sennoside A was found to be able to inhibit the QS expression of P. aeruginosa at subinhibitory concentrations. The QS-regulated virulence factors, including protease, elastase, rhamnolipid, and pyocyanin, were also inhibited by sennoside A at both transcriptional and translational levels. Moreover, sennoside A could suppress the motility of twitching, swimming, and swarming as well as the biofilm formation, which is associated with the acute and chronic infections of P. aeruginosa in a dose-dependent manner. The attenuated pathogenicity of P. aeruginosa by sennoside A was further verified by Chinese cabbage, Drosophila melanogaster, and Caenorhabditis elegans infection analysis. Further study found that sennoside A might target the las system, mainly LasR, to interfere with QS. All the results indicate that sennoside A could inhibit the QS system to attenuate its regulated virulence and pathogenicity via mainly targeting LasR in P. aeruginosa and further research to identify its anti-QS activity for other Gram-negative bacteria is warranted.

10.
Front Microbiol ; 13: 849020, 2022.
Article in English | MEDLINE | ID: mdl-35495674

ABSTRACT

As the global prototypical zoonotic hantavirus, Hantaan virus (HTNV) is prevalent in Asia and is the leading causative agent of severe hemorrhagic fever with renal syndrome (HFRS), which has profound morbidity and mortality. Macrophages are crucial components of the host innate immune system and serve as the first line of defense against HTNV infection. Previous studies indicated that the viral replication efficiency in macrophages determines hantavirus pathogenicity, but it remains unknown which factor manipulates the macrophage activation pattern and the virus-host interaction process. Here, we performed the transcriptomic analysis of HTNV-infected mouse bone marrow-derived macrophages and identified the long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1), especially the isoform NEAT1-2, as one of the lncRNAs that is differentially expressed at the early phase. Based on coculture experiments, we revealed that silencing NEAT1-2 hinders inflammatory macrophage activation and facilitates HTNV propagation, while enhancing NEAT1-2 transcription effectively restrains viral replication. Furthermore, sterol response element binding factor-2 (SREBP2), which controls the cholesterol metabolism process, was found to stimulate macrophages by promoting the production of multiple inflammatory cytokines upon HTNV infection. NEAT1-2 could potentiate SREBP2 activity by upregulating Srebf1 expression and interacting with SREBP2, thus stimulating inflammatory macrophages and limiting HTNV propagation. More importantly, we demonstrated that the NEAT1-2 expression level in patient monocytes was negatively correlated with viral load and HFRS disease progression. Our results identified a function and mechanism of action for the lncRNA NEAT1 in heightening SREBP2-mediated macrophage activation to restrain hantaviral propagation and revealed the association of NEAT1 with HFRS severity.

11.
Virus Res ; 307: 198605, 2022 01 02.
Article in English | MEDLINE | ID: mdl-34662681

ABSTRACT

Japanese encephalitis virus (JEV) causes the most commonly diagnosed viral encephalitis in Asia. JEV is a highly neurotropic flavivirus that can replicate efficiently in the brain. Axl belongs to the TAM (Tyro3, Axl, Mer) family, a group of tyrosine kinase receptors involved in the viral entry, micked as apoptotic bodies and regulation of innate immunity. However, the underlying mechanisms on its regulation in the neurons for JEV are unclear. Here, we found that Axl was upregulated in neurons after JEV infection. Unexpectedly, Axl deficient (Axl-/-) mice were more susceptible to JEV infection with increased viral loads in neurons. The RNA-sequencing analysis between the wild type neurons and Axl-/- neurons infected with JEV showed that many interferon-stimulated genes were downregulated in the Axl-/- neurons which innate immunity was attenuated largely. The rescue experiment in Axl-/- neurons indicated that Axl may be positively involved in the regulation of antiviral immunity. Taken together, our data demonstrated that Axl may play an antiviral role in JEV replication within neurons by modulating neuronal innate immunity.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Antiviral Agents , Immunity, Innate , Mice , Neurons
12.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884499

ABSTRACT

Pseudomonas aeruginosa, an important opportunistic pathogen, is capable of producing various virulence factors and forming biofilm that are regulated by quorum sensing (QS). It is known that targeting virulence factor production and biofilm formation instead of exerting selective pressure on growth such as conventional antibiotics can reduce multidrug resistance in bacteria. Therefore, many quorum-sensing inhibitors (QSIs) have been developed to prevent or treat this bacterial infection. In this study, wogonin, as an active ingredient from Agrimonia pilosa, was found to be able to inhibit QS system of P. aeruginosa PAO1. Wogonin downregulated the expression of QS-related genes and reduced the production of many virulence factors, such as elastase, pyocyanin, and proteolytic enzyme. In addition, wogonin decreased the extracellular polysaccharide synthesis and inhibited twitching, swimming, and swarming motilities and biofilm formation. The attenuation of pathogenicity in P. aeruginosa PAO1 by wogonin application was further validated in vivo by cabbage infection and fruit fly and nematode survival experiments. Further molecular docking analysis, pathogenicity examination of various QS-related mutants, and PQS signal molecule detection revealed that wogonin could interfere with PQS signal molecular synthesis by affecting pqsA and pqsR. Taken together, the results indicated that wogonin might be used as an anti-QS candidate drug to attenuate the infection caused by P. aeruginosa.


Subject(s)
Caenorhabditis elegans/drug effects , Drosophila melanogaster/drug effects , Flavanones/pharmacology , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/pathogenicity , Quorum Sensing , Virulence Factors/antagonists & inhibitors , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Biofilms/growth & development , Brassica/drug effects , Brassica/microbiology , Caenorhabditis elegans/microbiology , Drosophila melanogaster/microbiology , Gene Expression Regulation, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , Virulence Factors/genetics , Virulence Factors/metabolism
13.
Microorganisms ; 9(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069209

ABSTRACT

The respiratory chain is very important for bacterial survival and pathogenicity, yet the roles of the respiratory chain in P. aeruginosa remain to be fully elucidated. Here, we not only proved experimentally that the operon PA4427-PA4431 of Pseudomonas aeruginosa PAO1 encodes respiratory chain complex III (cytobc1), but also found that it played important roles in virulence and pathogenicity. PA4429-31 deletion reduced the production of the virulence factors, including pyocyanin, rhamnolipids, elastase, and extracellular polysaccharides, and it resulted in a remarkable decrease in pathogenicity, as demonstrated in the cabbage and Drosophila melanogaster infection models. Furthermore, RNA-seq analysis showed that PA4429-31 deletion affected the expression levels of the genes related to quorum-sensing systems and the transport of iron ions, and the iron content was also reduced in the mutant strain. Taken together, we comprehensively illustrated the function of the operon PA4427-31 and its application potential as a treatment target in P. aeruginosa infection.

14.
Molecules ; 26(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801847

ABSTRACT

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin's impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


Subject(s)
Flavonoids/pharmacology , Quinolones/metabolism , Type III Secretion Systems/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Biofilms/drug effects , China , Drosophila Proteins/drug effects , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Female , Flavonoids/metabolism , Models, Animal , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Quorum Sensing/drug effects , Rats , Rats, Sprague-Dawley , Transcription Factors/therapeutic use , Type III Secretion Systems/drug effects , Virulence/drug effects , Virulence Factors
15.
Front Cell Infect Microbiol ; 11: 647220, 2021.
Article in English | MEDLINE | ID: mdl-33829000

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains the most common cause of death from a single infectious disease. More safe and effective vaccines are necessary for preventing the prevalence of TB. In this study, a subunit vaccine of ESAT-6 formulated with c-di-AMP (ESAT-6:c-di-AMP) promoted mucosal and systemic immune responses in spleen and lung. ESAT-6:c-di-AMP inhibited the differentiations of CD8+ T cells as well as macrophages, but promoted the differentiations of ILCs in lung. The co-stimulation also enhanced inflammatory cytokines production in MH-S cells. It was first revealed that ESAT-6 and c-di-AMP regulated autophagy of macrophages in different stages, which together resulted in the inhibition of Mtb growth in macrophages during early infection. After Mtb infection, the level of ESAT-6-specific immune responses induced by ESAT-6:c-di-AMP dropped sharply. Finally, inoculation of ESAT-6:c-di-AMP led to significant reduction of bacterial burdens in lungs and spleens of immunized mice. Our results demonstrated that subunit vaccine ESAT-6:c-di-AMP could elicit innate and adaptive immune responses which provided protection against Mtb challenge, and c-di-AMP as a mucosal adjuvant could enhance immunogenicity of antigen, especially for innate immunity, which might be used for new mucosal vaccine against TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Animals , Antigens, Bacterial , Bacterial Proteins , CD8-Positive T-Lymphocytes , Dinucleoside Phosphates , Immunity , Mice , Vaccines, Subunit
16.
Curr Microbiol ; 78(2): 789-795, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33389060

ABSTRACT

A novel bacterial strain, designated MHJ-10JT, was isolated from a soil sample obtained from a grassland in Inner Mongolia, China. MHJ-10JT strain could grow at 4-37 °C (optimum: 30 °C) and pH 4-9 (optimum: pH 6), as well as in the presence of 0-6% NaCl (optimum: 1%). Cells of strain MHJ-10JT are Gram-negative, rod-shaped, and motile. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MHJ-10JT was most closely related to Pseudomonas lutea OK2T (98.5% 16S rRNA gene sequence similarity). The values of the average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) between strain MHJ-10JT and its related species were all below 80.5% and 24.4%, respectively, which are significantly lower than the thresholds of 95% for ANI and 70% for DDH for species delineation. The genomic G + C content of the MHJ-10JT strain is 64.8 mol%. Based on the phenotypic, genotypic, chemotaxonomic, and phylogenetic analyses, strain MHJ-10JT can be assigned to the genus Pseudomonas. In this study, we propose that strain MHJ-10JT be classified as a novel species belonging to the genus Pseudomonas with the species name Pseudomonas pratensis sp. nov. The type strain of the proposed novel species is MHJ-10JT (= KCTC 82206T = CGMCC 17322T).


Subject(s)
Soil Microbiology , Soil , Bacterial Typing Techniques , China , DNA, Bacterial/genetics , Fatty Acids/analysis , Grassland , Phospholipids/analysis , Phylogeny , Pseudomonas/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
Toxins (Basel) ; 12(3)2020 03 15.
Article in English | MEDLINE | ID: mdl-32183451

ABSTRACT

Deoxynivalenol (DON) is one of the most prevalent food- and feed-associated mycotoxins. It frequently contaminates agricultural commodities and poses serious threats to human and animal health and leads to tremendous economic losses globally. Much attention has been paid to using microorganisms to detoxify DON. In this study, a Bacillus licheniformis strain named YB9 with a strong ability to detoxify DON was isolated and characterized from a moldy soil sample. YB9 could degrade more than 82.67% of 1 mg/L DON within 48 h at 37 °C and showed strong survival and DON degradation rate at simulated gastric fluid. The effects of YB9 on mice with DON intragastrical administration were further investigated by biochemical and histopathological examination and the gut microbiota was analyzed by 16S rRNA Illumina sequencing technology. The results showed that DON increased the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatinine (Cr), decreased those of immunoglobulin G (IgG) and IgM in serum, and resulted in severe pathological damage of the liver, kidney, and spleen. By contrast, YB9 supplementation obviously inhibited or attenuated the damages caused by DON in mice. In addition, YB9 addition repaired the DON-induced dysbiosis of intestinal flora, characterized by recovering the balance of Firmicutes and Bacteroidetes to the normal level and decreasing the abundance of the potentially harmful bacterium Turicibacter and the excessive Lactobacillus caused by DON. Taken together, DON-degrading strain YB9 might be used as potential probiotic additive for improving food and feed safety and modulating the intestinal microbial flora of humans and animals.


Subject(s)
Bacillus licheniformis/isolation & purification , Dysbiosis/prevention & control , Gastrointestinal Microbiome/drug effects , Probiotics/pharmacology , Trichothecenes/toxicity , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Bacillus licheniformis/metabolism , Biodegradation, Environmental , Colon/drug effects , Colon/microbiology , Colon/pathology , Dietary Supplements , Dysbiosis/blood , Immunoglobulin G/blood , Liver/drug effects , Liver/microbiology , Liver/pathology , Mice, Inbred BALB C , Soil Microbiology , Trichothecenes/analysis
18.
Mitochondrial DNA B Resour ; 5(3): 2021-2023, 2020 May 12.
Article in English | MEDLINE | ID: mdl-33457728

ABSTRACT

Annamocarya sinensis, a plant species with extremely small populations endemic to Xichou county of Yunnan province, has been classified as a national second-class protected wild plant. In this study, we assembled its complete chloroplast genome. The total genome size of A. sinensis was 158,484 bp in length, containing a large single-copy region of 89,871 bp, a small single-copy region of 20,558 bp, and a pair of inverted repeat regions of 24,029 bp. The all GC content of A. sinensis chloroplast genome was 36.2%. It encodes a total of 114 unique genes, including 79 protein-coding genes, 31 tRNA genes, and four rRNA genes. Eleven genes contain a single intron, and three genes have two introns. Phylogenetic analysis results strongly supported that Annamocarya sinensis was closely related to Carya kweichowensis.

19.
Appl Environ Microbiol ; 86(5)2020 02 18.
Article in English | MEDLINE | ID: mdl-31862725

ABSTRACT

The biosynthesis of histidine, a proteinogenic amino acid, has been extensively studied due to its importance in bacterial growth and survival. Histidinol-phosphate phosphatase (Hol-Pase), which is responsible for the penultimate step of histidine biosynthesis, is generally the last enzyme to be characterized in many bacteria because its origin and evolution are more complex compared to other enzymes in histidine biosynthesis. However, none of the enzymes in histidine biosynthesis, including Hol-Pase, have been characterized in Pseudomonas aeruginosa, which is an important opportunistic Gram-negative pathogen that can cause serious human infections. In our previous work, a transposon mutant of P. aeruginosa was found to display a growth defect on glucose-containing minimal solid medium. In this study, we found that the growth defect was due to incomplete histidine auxotrophy caused by PA0335 inactivation. Subsequently, PA0335 was shown to encode Hol-Pase, and its function and enzymatic activity were investigated using genetic and biochemical methods. In addition to PA0335, the roles of 12 other predicted genes involved in histidine biosynthesis in P. aeruginosa were examined. Among them, hisC2 (PA3165), hisH2 (PA3152), and hisF2 (PA3151) were found to be dispensable for histidine synthesis, whereas hisG (PA4449), hisE (PA5067), hisF1 (PA5140), hisB (PA5143), hisI (PA5066), hisC1 (PA4447), and hisA (PA5141) were essential because deletion of each resulted in complete histidine auxotrophy; similar to the case for PA0335, hisH1 (PA5142) or hisD (PA4448) deletion caused incomplete histidine auxotrophy. Taken together, our results outline the histidine synthesis pathway of P. aeruginosaIMPORTANCE Histidine is a common amino acid in proteins. Because it plays critical roles in bacterial metabolism, its biosynthetic pathway in many bacteria has been elucidated. However, the pathway remains unclear in Pseudomonas aeruginosa, an important opportunistic pathogen in clinical settings; in particular, there is scant knowledge about histidinol-phosphate phosphatase (Hol-Pase), which has a complex origin and evolution. In this study, P. aeruginosa Hol-Pase was identified and characterized. Furthermore, the roles of all other predicted genes involved in histidine biosynthesis were examined. Our results illustrate the histidine synthesis pathway of P. aeruginosa The knowledge obtained from this study may help in developing strategies to control P. aeruginosa-related infections. In addition, some enzymes of the histidine synthesis pathway from P. aeruginosa might be used as elements of histidine synthetic biology in other industrial microorganisms.


Subject(s)
Bacterial Proteins/genetics , Histidine/metabolism , Histidinol-Phosphatase/genetics , Pseudomonas aeruginosa/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Histidinol-Phosphatase/metabolism , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism
20.
Front Immunol ; 10: 1519, 2019.
Article in English | MEDLINE | ID: mdl-31333655

ABSTRACT

Bacillus Calmette-Guerin (BCG) is a live attenuated vaccine against tuberculosis (TB) and remains the most commonly used vaccine worldwide. However, BCG has varied protective efficiency in adults and has safety concerns in immunocompromised population. Thus, effective vaccines are necessary for preventing the prevalence of TB. Cyclic di-AMP (c-di-AMP) is a bacterial second messenger which regulates various cellular processes and host immune response. Previous work found that c-di-AMP regulates bacterial physiological function, pathogenicity and host type I IFN response. In this study, we constructed a recombinant BCG (rBCG) by overexpressing DisA, the diadenylate cyclase of Mycobacterium tuberculosis (Mtb), and observed the physiological changes of rBCG-DisA. The immunological characteristics of rBCG-DisA were investigated on humoral and cellar immune responses in a mice infection model. Our study demonstrated that overexpression of DisA in BCG does not affect the growth but reduces the length of BCG. rBCG-DisA-immunized mice show similar humoral and cellar immune responses in BCG-immunized mice. After Mtb infection, the splenic lymphocytes from both BCG and rBCG-DisA-immunized mice produced more IFN-γ, IL-2, and IL-10 than the un-immunized (UN) mice, while the cytokine levels of the rBCG-DisA group increased significantly than those of the BCG group. The transcription of IFN-ß, IL-1ß and autophagy related genes (Atgs) were up-regulated in macrophages after treated with c-di-AMP or bacterial infection. The productions of IL-6 were increased after Mtb challenge, especially in the rBCG-DisA-immunized mice. Strikingly, H3K4me3, the epigenetic marker of innate immune memory, was found in both two immunized groups, and the rBCG-DisA group showed stronger expression of H3K4me3 than that of BCG. In addition, the pathological changes of rBCG-DisA immunized mice were similar to that of BCG-immunized mice. The bacterial burdens in the lungs and spleens of BCG- and rBCG-DisA-immunized mice were significantly decreased, but there was no significant difference between the two immunized groups. Together, these results suggested that compared to BCG, rBCG-DisA vaccination, induces stronger immune responses but did not provided additional protection against Mtb infection in this study, which may be related to the innate immunity memory. Hence, c-di-AMP is a promising immunomodulator for a further developed BCG as a better vaccine.


Subject(s)
Adjuvants, Immunologic , Antigens, Bacterial , BCG Vaccine , Cyclic AMP/immunology , Immunization , Tuberculosis , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , BCG Vaccine/genetics , BCG Vaccine/immunology , BCG Vaccine/pharmacology , Cyclic AMP/genetics , Cytokines/immunology , Mice , RAW 264.7 Cells , Tuberculosis/genetics , Tuberculosis/immunology , Tuberculosis/pathology , Tuberculosis/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...