Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(24): 247101, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949337

ABSTRACT

We consider the effect of perturbing a single bond on ground states of nearest-neighbor Ising spin glasses, with a Gaussian distribution of the coupling constants, across various two- and three-dimensional lattices and regular random graphs. Our results reveal that the ground states are strikingly fragile with respect to such changes. Altering the strength of only a single bond beyond a critical threshold value leads to a new ground state that differs from the original one by a droplet of flipped spins whose boundary and volume diverge with the system size-an effect that is reminiscent of the more familiar phenomenon of disorder chaos. These elementary fractal-boundary zero-energy droplets and their composites feature robust characteristics and provide the lowest-energy macroscopic spin-glass excitations. Remarkably, within numerical accuracy, the size of such droplets conforms to a universal power-law distribution with exponents that depend on the spatial dimension of the system. Furthermore, the critical coupling strengths adhere to a stretched exponential distribution that is predominantly determined by the local coordination number.

3.
Nat Commun ; 14(1): 725, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759516

ABSTRACT

Spin glasses are disordered magnets with random interactions that are, generally, in conflict with each other. Finding the ground states of spin glasses is not only essential for understanding the nature of disordered magnets and many other physical systems, but also useful to solve a broad array of hard combinatorial optimization problems across multiple disciplines. Despite decades-long efforts, an algorithm with both high accuracy and high efficiency is still lacking. Here we introduce DIRAC - a deep reinforcement learning framework, which can be trained purely on small-scale spin glass instances and then applied to arbitrarily large ones. DIRAC displays better scalability than other methods and can be leveraged to enhance any thermal annealing method. Extensive calculations on 2D, 3D and 4D Edwards-Anderson spin glass instances demonstrate the superior performance of DIRAC over existing methods. The presented framework will help us better understand the nature of the low-temperature spin-glass phase, which is a fundamental challenge in statistical physics. Moreover, the gauge transformation technique adopted in DIRAC builds a deep connection between physics and artificial intelligence. In particular, this opens up a promising avenue for reinforcement learning models to explore in the enormous configuration space, which would be extremely helpful to solve many other hard combinatorial optimization problems.

SELECTION OF CITATIONS
SEARCH DETAIL
...